GUIDE TO NEVADA STATE WATER PLANNING REPORTS

* * * * *

Prepared By

STATE ENGINEER'S OFFICE
Carson City, Nevada

June, 1976
TO THE CITIZENS OF THE STATE OF NEVADA

The Division of Water Resources has produced 29 separate publications, including summaries, since 1971 in support of the ongoing Nevada water planning effort. The "Water for Nevada" series included 22 reports and the "Alternative Plans for Water Resource Use" series included 7 reports. A "Special summary Report" was based upon the previously published reports, and provided general and specific conclusions and recommendations upon:

- Water laws and administrative procedures
- Regional water and related land resources considerations
- Projected water requirements

"Guide to Nevada State Water Planning Reports" is offered to facilitate in depth use of the immense amount of material published to date in these ongoing series of reports. A brief abstract along with the contents of each report is presented in the order of the date of publication.

Respectfully,

[Signature]

Roland D. Westergard
State Engineer
TABLE OF CONTENTS

INTRODUCTION ... 1

NEVADA STATE WATER PLANNING REPORTS 3

25. Alternative Plans for Water Resource Use, Central Region, Area IV, State Engineer's Office, Nevada Division of Water Resources, Department of Conservation and Natural Resources, April 1974. 79

INTRODUCTION

Water resource planning has been involved in administrative and management decisions and in the formulation of necessary information and data for a basis of such decisions for many years in the State of Nevada.

However, there has been a general concern about the State's limited water resources and the adequacy of these resources to meet current and future needs. There was also an awareness of other state, regional and national water planning efforts and a recognition of the necessity for the State of Nevada to be prepared to play her proper role in interstate and regional efforts and determinations.

Senate Joint Resolution No. 15 of the 1967 Nevada Legislative Session directed that the Division of Water Resources, of the Department of Conservation and Natural Resources, determine Nevada's future water needs and available water resources. Senate Concurrent Resolution No. 16, of the 1967 Session directed the Legislative Commission to study future Statewide Water Needs. A Legislative Subcommittee was appointed by the Legislative Commission to undertake this study.

The Subcommittee and the State Engineer subsequently recommended the establishment within the Division of Water Resources of a Water Resources Planning Branch and also recommended legislation to assure statutory authority for the planning function (Report to the Legislative Commission on Nevada Statewide Water Needs, January 31, 1969).

Development of a comprehensive water resource plan for Nevada was authorized by the 1969 Legislature under the provisions of Nevada Revised Statutes 532.165.

The 1973 Legislature by an Act, Chapter 554, required the State Engineer to complete the comprehensive water resource plan and submit it to the 1975 session of the legislature.

Development of objectives, principles, assumptions and procedures to be used in the planning process was essential at the outset. It was also considered advisable and necessary to provide for a review by the citizens of the State and their elected local and state officials of these proposed procedures and to seek any direction the public might suggest. Public meetings were held in 1969 and 1970 in all of the sixteen counties and Carson City. Views expressed were incorporated in the planning process.

It was also considered important to report the data and information to the legislators and other interested persons as it was developed. This was intended to serve several purposes including participation in the planning process, a
continuing status report on the efforts and to avoid submitting large volumes of material all at one time just prior to a legislative session.

To accomplish this, two "series" of reports have been presented. One series, "Water for Nevada" addresses Statewide inventory and projection data and information, and certain specific areas or subjects. The other "Alternative Plans for Water Resource Use" addresses the issues by regions of the State.

Reports and the supporting material have been developed by the staff of the Division of Water Resources, other state, local and federal agency personnel, consultants, and representatives of private entities.

This report presents the title and table of contents of all Nevada State Water Planning Reports. It is intended as a guide to facilitate the retrieval of the wide variety of data presented in the entire Water Plan. When it is determined that a certain map, table or other data is contained in a water planning report, that individual report must be consulted for the actual information.

Although some reports are in short supply, or out of print, some are available through the State Engineer's office, Division of Water Resources, Department of Conservation and Natural Resources, Carson City, Nevada. Additionally, these reports are available at most county libraries, the State Library in Carson City and the University of Nevada at both Reno and Las Vegas.
The purpose and scope of the State Water Planning Program are presented. The basic objectives including environmental quality, economic efficiency and area development are described as are the principles and assumptions. The procedures for inventories of available water resources, their present use and projected requirements are included.

CONTENTS

Purpose and Scope
Objectives
Principles and Assumptions
Procedures
Organization Chart

Estimates of water withdrawals and consumption by counties and hydrographic regions provide a basis for making projections of future water requirements in Nevada for different types of uses. Irrigation, public supply, industrial, electric power, and rural uses are presented. Evaporation losses from lakes, streams and reservoirs are shown. Trends and changes in use are described for the period 1950-1969 and a history of water development in each category of use is given.

CONTENTS

Summary
Introduction
Definition of Terms
History
The Current Role of Industry
Water and Electric Power
Recreation
The Stream System
Border Area Water
The report presents a summary of several alternative plans for alleviating a projected water shortage in Southern Nevada near the year 2000. The plans discuss various importing, schemes, reduced water use, and limiting and dispersing population.

CONTENTS

Summary
Recommendations
Table of Contents
Narrative Summary
 Description of Study Area
 Alternative Water Supply Plans
 Alleviating Shortage by Reducing Consumption, Redistributing Population or Limiting Population
 Comparison of Alternatives

Early attention has been given to meeting the needs of those areas of the state which are presently experiencing water shortages and those areas which may be water deficient in the near future. Alternative ways were studied and evaluated to meet the potential water needs in southern Nevada which are expected to be over and above those which can be met with the importation of Nevada's allocation of mainstream water from the Colorado River through the Southern Nevada Water Project. Much of the material developed could be applied to other areas and situations in the State.
CONTENTS

SECTION I - INTRODUCTION

1.01 GENERAL
1.02 AUTHORIZATION
1.03 STUDY AREA
1.04 SCOPE OF REPORT
 (a) Population Projections and Future Water Requirements
 (b) Local Water Supplies
 (c) Comparison of Water Resources and Demands
 (d) Supplemental Water Supply from Sources Within Nevada
 (e) Supplemental Water Supply from Sources Outside Nevada
 (f) Alleviating Water Shortage by Reducing Consumption
 (g) Alleviating Water Shortage by Population Redistribution
 (h) Alleviating Water Shortage by Limiting Population
1.05 CONTRIBUTIONS BY STATE ENGINEER'S OFFICE
1.06 ACKNOWLEDGEMENTS

SECTION II - STUDY AREA CHARACTERISTICS

2.01 GENERAL
 (a) The Southern Nevada Economy and Its Growth Potential
 (b) Population Projections and Their Limitations
 (c) Basic Assumptions for Population Projections
 (d) Geographic Distribution of Future Populations
 (e) Basis and Sources of Water Requirement Predictions
 (f) Waste Water Utilization
 (g) Water Supply Within Nevada
 (h) Water Deficiencies and Water Available for Export
2.02 LAS VEGAS METROPOLITAN SUBAREA
 (a) Present and Future Population
 (b) Present and Future Water Requirements
 (c) Water Supply
2.03 FORT MOJAVE SUBAREA
 (a) Present and Future Population
 (b) Present and Future Water Requirements
 (c) Water Supply
 (d) Water Balance
2.04 LAKE MEAD NATIONAL RECREATION AREA
 (a) Present and Future Population
 (b) Present and Future Water Requirements
 (c) Water Supply
 (d) Water Balance
2.05 MOAPA VALLEY SUBAREA
 (a) Present and Future Population
 (b) Present and Future Water Requirements
 (c) Water Supply
 (d) Water Balance Assumed
2.06 VIRGIN VALLEY SUBAREA
(a) Present and Future Population
(b) Present and Future Water Requirements
(c) Water Supply
(d) Water Surplus

2.07 PAHRUMP VALLEY SUBAREA
(a) Present and Future Population
(b) Present and Future Water Requirements
(c) Water Supply
(d) Water Surplus

2.08 AMARGOSA DESERT SUBAREA
(a) Present and Future Population
(b) Present and Future Water Requirements
(c) Water Supply
(d) Water Surplus

2.09 RAILROAD VALLEY SUBAREA
(a) Present and Future Population
(b) Present and Future Water Requirements
(c) Water Supply
(d) Water Surplus

2.10 PAHRANAGAT VALLEY SUBAREA
(a) Present and Future Population
(b) Present and Future Water Requirements
(c) Water Supply
(d) Water Surplus

SECTION III - SUPPLEMENTAL WATER SOURCES WITHIN NEVADA

3.01 GENERAL
(a) Destination of Imported Water
(b) Required Aqueduct Capacity
(c) Selection of Alignment
(d) Wells
(e) Collection Systems
(f) Open Channels
(g) Pipelines
(h) Tunnels
(i) Pumping Stations
(j) Power Stations
(k) Reservoirs
(l) Treatment Facilities
(m) Energy Dissipating Stations
(n) Terminal Points

3.02 COST ESTIMATES
(a) Construction Costs
(b) Amortization Period - Project Life
(c) Interest
(d) Contingencies
(e) Engineering, Administration, Legal and Bond Marketing
(f) Operation and Maintenance
3.03 PAHRUMP VALLEY AS A SOURCE OF SUPPLY
(a) Amount of Water Available
(b) Life of Project
(c) Description of Aqueduct Facilities
(d) Cost of System
(e) Effects on Pahrump If System Implemented

3.04 AMARGOSA DESERT AS A SOURCE OF SUPPLY
(a) Amount of Water Available
(b) Life of Project
(c) Description of Aqueduct Facilities
(d) Cost of System
(e) Effect on Amargosa Desert if System Implemented

3.05 RAILROAD VALLEY AS A SOURCE OF SUPPLY
(a) Amount of Water Available
(b) Life of Project
(c) Description of Aqueduct Facilities
(d) Cost of System
(e) Effect on Railroad Valley if System Implemented

3.06 PAHRANAGAT AS A SOURCE OF SUPPLY
(a) Amount of Water Available
(b) Life of Project
(c) Description of Aqueduct Facilities
(d) Cost of System
(e) Effects on Pahranagat Valley if System Implemented

3.07 VIRGIN RIVER
(a) Amount of Water Available
(b) Water Quality
(c) Erratic Flows
(d) Cost of Importing by Pipeline
(e) Credit to Nevada’s Colorado River Allotment
(f) Cost of Importing Through Enlarged SNWP Facilities

3.08 COMPARISON OF INTRASTATE IMPORTATION PLANS

SECTION IV - SUPPLEMENTAL WATER SOURCES OUTSIDE NEVADA

4.01 GENERAL
4.02 NAWAPA AND THE PACIFIC SOUTHWEST WATER PLAN
4.03 SNAKE - COLORADO PROJECT
4.04 MODIFIED SNAKE - COLORADO PROJECT
4.05 SIERRA - CASCADE PROJECT
4.06 DESALINIZATION
4.07 EFFECT OF UPDATING UNIT COSTS OF REGIONAL WATER PLANS

SECTION V - ECONOMIZATION OF WATER

5.00 INTRODUCTION
5.01 TREND IN WATER USE
 (a) Short and Long Run
 (b) Determinants of Household Water Consumption
5.02 WATER SHORTAGE PROBLEMS
 (a) Rationing Mechanisms
5.03 ALLEVIATING WATER SHORTAGE BY REDUCING CONSUMPTION
(a) Introduction
(b) The Demand Function
(c) The Elasticity Concept
(d) Econometric Studies

5.04 THE PRESENT AND FUTURE LAS VEGAS WATER CONSUMPTION
(a) The Producers and the Users
(b) Experience with Rate Increases Relative to Consumption in Metropolitan Las Vegas
(c) Comparable Communities
(d) Water Economy Projections for Las Vegas

5.05 LONG RUN EFFECTS OF REDUCED WATER USE
(a) Households
(b) Industry
(c) Government

5.06 THE ECONOMICS OF WATER PRICING
(a) Traditional View
(b) Suggested View

5.07 STRATEGY OF WATER RATE INCREASES
(a) Timing
(b) Educational Campaign
(c) Reasons for a Higher Price for Water
(d) Required Price Increase to Reduce Consumption

SECTION VI - POPULATION REDISTRIBUTION

6.01 GENERAL
(a) Basic Concept
(b) Growth Effects in Large Cities
(c) Advantages of Dispersing Population
(d) Disadvantages of Dispersing Population
(e) Difficulties in Dispersing Population
(f) Means of Dispersing Population

6.02 NUMBER OF PERSONS INVOLVED

6.03 POTENTIAL OF SUBAREAS FOR RECEIVING INCREASED POPULATION
(a) Fort Mojave
(b) Moapa Valley
(c) Virgin Valley
(d) Pahrump Valley
(e) Amargosa Desert
(f) Railroad Valley
(g) Pahranagat Valley

6.04 EFFECT ON LAS VEGAS OF A POPULATION DISPERSION POLICY

6.05 MASS TRANSPORTATION
(a) Number of Persons Involved
(b) Buses
(c) Freeways and Automobiles
SECTION VII - LIMITING POPULATION GROWTH

7.01 GENERAL
7.02 HISTORY
7.03 CURRENT CONFLICTS
 (a) Family Planning
 (b) Migration
7.04 POSSIBLE IMPLEMENTATION OF PROGRAM IN NEVADA
7.05 EFFECT OF CONTROLLING FAMILY SIZE
7.06 CONTROLLING MIGRATION

SECTION VIII - COMPARISON OF PLANS

8.01 COSTS
8.02 EFFECTS ON AREA OF ORIGIN
8.03 EFFECT ON AREA OF USE
8.04 ADAPTABILITY TO LONG-RANGE PLANS BEYOND 2020
8.05 SUMMARY AND COMPARISON OF UNIT WATER COSTS

REFERENCES
(Located at Back of Report)

BIBLIOGRAPHY
(Located at Back of Report)

LIST OF TABLES

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Capital and Unit Water Costs for Interstate Importation Plans</td>
</tr>
<tr>
<td>2</td>
<td>Comparison of Unit Water Costs in $/Ac.Pt.</td>
</tr>
<tr>
<td>II-1</td>
<td>Population of Southern Nevada</td>
</tr>
<tr>
<td>II-2</td>
<td>Population Projections with Base Growth Only</td>
</tr>
<tr>
<td>II-3</td>
<td>Projected Water Requirements in Las Vegas Valley Metropolitan Subarea</td>
</tr>
<tr>
<td>II-4</td>
<td>Chemical Analysis of Selected Wells in Las Vegas Water District Well Field</td>
</tr>
<tr>
<td>II-5</td>
<td>Projected Distribution of Nevada's Share of Colorado River Water</td>
</tr>
<tr>
<td>II-6</td>
<td>Chemical Analysis of Lake Mead Water</td>
</tr>
<tr>
<td>II-7</td>
<td>Water Supply and Demand in Las Vegas Metropolitan Subarea</td>
</tr>
<tr>
<td>II-8</td>
<td>Chemical Analysis of Virgin River Water</td>
</tr>
<tr>
<td>II-9</td>
<td>Chemical Analysis of Water Samples from Pahrump</td>
</tr>
<tr>
<td>II-10</td>
<td>Chemical Analysis of Water Samples from Amargosa</td>
</tr>
<tr>
<td>II-11</td>
<td>Chemical Analysis of Water Samples from Railroad Valley</td>
</tr>
</tbody>
</table>
II-12 Chemical Analysis of Water Samples from Pahrnagat
III-1 Estimated Water Cost and Project Life of Intrastate Importation Plans
IV-1 Summary of Costs - Desalinization Plan
IV-2 Original and Adjusted Unit Water Costs of Interstate Plans
IV-3 Estimated Unit Water Cost of Interstate Importation Plans
V-1 Summary of Elasticity of Demand for Urban Water
V-2 Water Sales of Las Vegas Valley Water District
V-3 Distribution of Water Sales
V-4 Gross Water Demand Forecast and Possible Economies
VI-1 Population Projections with Sizeable Dispersion Outside Las Vegas
VI-2 Estimated Cost of Commuting in Year 2020
VIII-1 Comparison of Unit Water Costs ($/Ac.Ft.)

LIST OF FIGURES

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Location Map Showing Study Area Boundaries</td>
</tr>
<tr>
<td>2</td>
<td>Population Projections in Las Vegas Metropolitan Subarea</td>
</tr>
<tr>
<td>3</td>
<td>Water Deficit in Las Vegas Metropolitan Subarea</td>
</tr>
<tr>
<td>I-1</td>
<td>Location Map Showing Study Area Boundaries</td>
</tr>
<tr>
<td>II-1</td>
<td>Population Projections in Las Vegas Metropolitan Subarea</td>
</tr>
<tr>
<td>II-2</td>
<td>Water Deficit in Las Vegas Metropolitan Subarea</td>
</tr>
<tr>
<td>III-1</td>
<td>Water Use Characteristics of Las Vegas Valley Water District on a Monthly Basis</td>
</tr>
<tr>
<td>III-2</td>
<td>Project Life of Aqueduct Between Pahrnump and Las Vegas</td>
</tr>
<tr>
<td>III-3</td>
<td>Project Life of Aqueduct Between Amargosa and Las Vegas</td>
</tr>
<tr>
<td>III-4</td>
<td>Project Life of Aqueduct Between Railroad and Las Vegas</td>
</tr>
<tr>
<td>III-5</td>
<td>Project Life of Aqueduct Between Pahrnagat and Las Vegas</td>
</tr>
<tr>
<td>III-6</td>
<td>Profile of Pahrnump to Las Vegas Aqueduct</td>
</tr>
<tr>
<td>III-7</td>
<td>Profile of Amargosa to Las Vegas Aqueduct</td>
</tr>
<tr>
<td>III-8</td>
<td>Profile of Railroad to Las Vegas Aqueduct</td>
</tr>
<tr>
<td>III-9</td>
<td>Profile of Pahrnagat to Las Vegas Aqueduct</td>
</tr>
<tr>
<td>V-1</td>
<td>Hypothetical Water Demands of a Household</td>
</tr>
<tr>
<td>V-2</td>
<td>Demand Curve of Constant Elasticity for Household Water in Northern Utah 1962</td>
</tr>
</tbody>
</table>

LIST OF PHOTOGRAPHS

Virgin River Country - Nevada
Pahrnump Valley - Nevada From Mt. Charleston
Amargosa Desert - Nevada
Aerial - Springs at Lockes - Railroad Valley - Nevada
Pahrnagat Valley - Nevada
The soils of the Railroad Valley area were identified, mapped, and named according to the U. S. Comprehensive System of Soil Classification, as part of a statewide reconnaissance soil survey. This progressive survey is designed to furnish basic soil data needed to evaluate a variety of potential uses. Soil Hydrologic Groups, Soil Materials Sources, Soil Erosion Potential and Soil Irrigability Classes are among the several interpretive evaluations made in Railroad Valley as a result of the survey.

In addition to being used in the development of the State Water Plan, the progressive reconnaissance soil survey will also contribute to an eventual soil map of Nevada which will be a basic resource data source for state, regional and local land evaluation and development planning. The summaries of the Railroad Valley and Dixie Valley reports are included here as examples of the type and form of material being developed.

CONTENTS

Summary
Introduction
Environmental Features
 Location and Cultural Features
 Landforms and Geology
 Climate
 Water Resources
 Crop Adaptability
 Vegetation
Soils
 Soil Taxonomy
 Characteristic Soil Features in the Area
 General Soil Map
 Playas
 Saline Soils of the Lake Plain
 Finer Textured Soils of Smooth Alluvial Plains
 Coarser Textured Soils of Smooth Alluvial Plains
 Shallow Soils of Dissected Fans and Foothills
 Shallow Soils, Rubbleland and Rock Outcrop of Mountains
 Descriptions of Map Units of the Reconnaissance Soil Map
 Soil Map Unit Symbols and Acreage
 Constituent Soils and Inclusions
 Physiographic Position

-11-
Typical Vegetation
Soil Drainage
Depth to Bedrock, Hardpan, or a Gravelly Substratum
Profile Permeability
Available Waterholding Capacity
Coarse Fragments

Soil Interpretations for Land Use Planning and Management
Soil Irrigability Classification
Soil Hydrologic Group
Land Capability Class
Erosion Hazard
Shrink–Swell Hazard
Engineering Soil Classes
Suitability as Gravel or Sand Sources
Additional Possible Interpretations

Footnotes
References
Tables
Reconnaissance Soil Map
Irrigable Soils Map

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Temperature and Precipitation Data for Rattlesnake Highway Maintenance Station (1942-1960)</td>
</tr>
<tr>
<td>5.</td>
<td>Spring and Fall Low Temperatures and Growing Season Probabilities at the Currant Highway Maintenance Station (1948, 1963-1968)</td>
</tr>
<tr>
<td>6.</td>
<td>Kinds of Soils Mapped in the Railroad Valley Area</td>
</tr>
<tr>
<td>7.</td>
<td>Meanings of the Formative Elements in Names of Soil Classes</td>
</tr>
<tr>
<td>8.</td>
<td>Slope Classes and Names</td>
</tr>
<tr>
<td>9.</td>
<td>Soil Profile Permeability Class Criteria</td>
</tr>
<tr>
<td>10.</td>
<td>Available Waterholding Class Ranges</td>
</tr>
<tr>
<td>11.</td>
<td>Kinds of Soils in Map Units and Their Properties</td>
</tr>
<tr>
<td>12.</td>
<td>Criteria for Evaluation of Soil Irrigability Potential</td>
</tr>
<tr>
<td>13.</td>
<td>Acreages of Irrigable and Nonirrigable Soils in the Railroad Valley Area</td>
</tr>
<tr>
<td>14.</td>
<td>Detailed Legend for the Irrigable Soils Map</td>
</tr>
<tr>
<td>15.</td>
<td>Soil Interpretations</td>
</tr>
<tr>
<td>16.</td>
<td>Chemical Analysis of Water Samples from Railroad Valley</td>
</tr>
</tbody>
</table>

-12-
This report constitutes an inventory of the water resources of the State and presents the total ground and surface water supply presently available in Nevada.

CONTENTS

Introduction

PART I
History
The Rivers
Ground Water
The Weather

PART II
Source of Data
The Hydrographic Regions
Hydrologic Summary

TABLES

Table 1. Hydrologic Summary
Table 1-A. Transitional Storage
Table 2. Climate and Precipitation Data
Table 3. Ground Water Data
Table 4. Surface Water Data
Table 5. Larger and Better Known Springs of Nevada
Table 6. Lake and Reservoir Inventory
Table 7. Major Manmade Diversions Across Hydrographic Boundaries

FIGURES

Figure 1. Average Seasonal Pattern of Streamflow
Figure 2. Cumulative Departure of Streamflow
Figure 3. Total Dissolved Solids in Ground Water
Figure 4. Better Known Springs in Nevada
Figure 5. Water Resources and Inter-basin flows

This atlas includes a series of maps containing hydrologic data and basic information related to the State Water Planning effort.

CONTENTS

MAP NO. STATE MAPS
- S-1 General Map
- S-2 Hydrographic Areas Map
- S-3 Average Annual Precipitation
- S-4 Average Annual Runoff
- S-5 Average Annual Evaporation
- S-6 Critical Ground Water Areas
- S-7 Total Dissolved Solids in Ground Water
- S-8 Natural Ground Water Discharge Areas
- S-9 Valley Ground Water Reservoirs
- S-10 Lithologic Units
- S-11 Land Suitability for Food and Fiber Production
- S-12 Vegetal Cover
- S-13 Water Resources and Inter-Basin Flows
- S-14 Freeze Free (32°F) Seasons
- S-15 Irrigable Soils
- S-16 Static Ground Water Levels
- S-17 Water-Related Outdoor Recreation Areas

MAP NO. LAKE AND RESERVOIR MAPS
- L-1 Existing Lakes and Reservoirs
- L-2 Pleistocene Lakes
- L-3 Bathymetric Reconnaissance, Lahontan Reservoir
- L-4 Bathymetric Reconnaissance of Washoe Lakes
- L-5 Hydrologic Reconnaissance of Soda Lakes
- L-6 Bathymetric Reconnaissance of Pyramid Lake
- L-7 Hydrologic Regimen of Walker Lake
- L-8 Bathymetric Reconnaissance of Topaz Lake
- L-9 Bathymetric Reconnaissance of Rye Patch Reservoir (including Pitt–Taylor Reservoirs)
- L-10 Bathymetric Reconnaissance of Marlette and Spooner Lakes
- L-11 Bathymetric Reconnaissance of Lake Tahoe
- L-12 Bathymetric Reconnaissance of Weber Reservoir
- L-13 Bathymetric Reconnaissance of Wild Horse Reservoir

UNNUMBERED MAPS
- Nevada Population Distribution, 1970
- Status of Stream Adjudication Proceedings in Nevada, 1974

Water for Nevada, Report No. 4, Forecasts for the Future - Mining, State Engineer's Office, Nevada Division of Water

-14-
Estimates of future water needs for Nevada's mineral production are presented for hydrographic regions and counties. A summary by commodity for the entire state is also given. Future mineral production is forecast for some thirty-five commodities ranging from gold and silver to sand and gravel.

In addition to the estimates of production by commodity, and the associated water requirements, the report also presents estimates of employment needs and value of production.

CONTENTS

PART I General Considerations
Chapter
1 Introduction
2 Technology and Water Needs of the Mineral Industry
 Mineral Exploration Technology
 Mining Technology
 Concentration Technology
 Refining Technology
3 History of Mining in Nevada
4 Assumptions
5 General Geology of Nevada
 Distribution of Rock Types
 Intrusive Rocks
 Pre-Tertiary Non-intrusive Rocks
 Tertiary Volcanic Rocks
 Deep Cover
 Shallow Cover
 Geologic History
 Distribution of Mineralization
6 Classification of Nevada Mineral Commodities
 Category 1: Commodities in Non-economic Concentrations
 Category 2: Byproduct Commodities
 Category 3: Metallic Mineral Commodities
 Category 4: Industrial Rock and Mineral Commodities
 Category 5: Miscellaneous Mineral Commodities
7 Comparison with a Similar Study

PART II Metallic Mineral Commodities

8 Future Metallic Mineral Deposits: General Considerations
9 Antimony (SIC No. 1099*)
10 Beryllium (SIC No. 1099*)
11 Copper (SIC No. 1021*)
12 Gold and Silver (SIC No. 104*)
13 Iron (SIC No. 1011*)
14 Lead and Zinc (SIC No. 1031*)
15 Manganese (SIC No. 1062*)
16 Mercury (SIC No. 1092*)
17 Molybdenum (SIC No. 1069*)
18 Tungsten (SIC No. 1064*)
19 Uranium (SIC No. 1094*)
20 Vanadium (SIC No. 1094*)

PART III Industrial Rock and Mineral Commodities

21 Future Industrial Rock and Mineral Deposits: General Considerations
22 Barite (SIC No. 1472*)
23 Clays (SIC No. 145*)
24 Diatomite (SIC No. 1499*)
25 Fluorspar (SIC No. 1473*)
26 Refractories (SIC No. 1459*)
27 Sand, Industrial (SIC No. 1446*)
28 Sand and Gravel, Construction (SIC No. 1442*)
29 Stone (SIC No. 142*)
30 Talc, Soapstone and Pyrophyllite (SIC No. 1496*)
31 Vermiculite (SIC No. 1499*)
32 Zeolites (SIC No. 1499*)

PART IV Miscellaneous Mineral Commodities

33 Future Miscellaneous Mineral Deposits: General Considerations
34 Gem and Semiprecious Stones (SIC No. 1499*)
35 Geothermal Resources (SIC No. 4911*)
36 Petroleum and Natural Gas (SIC No. 1311*)
37 Saline Playa Deposits (SIC No. 28*)
38 Total-rock Components (SIC No. 10*)

References

*Standard Industrial Classification Number for the mining of this commodity, as established by the United States Bureau of the Budget.
LIST OF FIGURES

Figure 1-1 Bassett Lake, a recreational lake stocked with game fish
Figure 2-1 Typical large Nevada open-pit mine
Figure 2-2 Geyser erupting in geothermal area near Beowawe
Figure 2-3 Concentrator at Gabbs
Figure 2-4 Flotation cells concentrating copper ore at McGill
Figure 3-1 A mine crew in 1898
Figure 3-2 Graph showing annual value of Nevada's mineral production since 1860
Figure 3-3 Inside Sutro Tunnel
Figure 3-4 Power shovels and huge trucks move ore from modern open-pit mine
Figure 4-1 Alfalfa field
Figure 5-1 Baker Lake in the Wheeler Peak area of White Pine County
Figure 5-2 Geologic time divisions and major events in Nevada
Figure 5-3 Diagrammatic representation of geologic structure in the Basin and Range Province
Figure 5-4 High altitude photo looking southwest across Basin and Range terrain in White Pine County
Figure 6-1 Cinder cone formed by volcanic action about one hundred thousand years ago
Figure 6-2 Empire, Washoe County
Figure 11-1 Heap leaching
Figure 24-1 Photomicrograph of a diatom
Figure 28-1 Paradise Ponds, Reno
Figure 34-1 Nevada gemstones
Figure 35-1 Geothermal area near Wabuska, Lyon County
Figure 37-1 Cross section through a saline Playa
Figure V1-1 Flume carrying water to a mine of the early 1900's
Figure V1-2 Collection pond for recovery of water used in leaching of copper from mine dumps

LIST OF MAPS

MAP
5-1 Modified Geologic Map of Nevada
9-1 Distribution of Known Antimony Occurrences and Production
10-1 Distribution of Known Individual Beryllium Occurrences
11-1 Distribution of Known Copper Occurrences and Production
12-1 Distribution of Known Gold Occurrences and Production
12-2 Distribution of Known Silver Occurrences and Production
12-3 Distribution of Known Gold-Silver Occurrences and Production
13-1 Distribution of Known Iron Occurrences and Production

-17-
LIST OF TABLES

TABLE
2-1 Water and Manpower Requirements for Mineral Processing
5-1 Generalized Rock Groupings in Nevada
6-1 Classification of Nevada Mineral Commodities
6-2 Commodities in Noneconomic Concentrations
6-3 Byproduct Commodities
6-4 Metallic Mineral Commodities
6-5 Industrial Rock and Mineral Commodities
6-6 Miscellaneous Mineral Commodities
20-2 Estimated Future Vanadium Statistics, by Hydrographic Region
22-1 Estimated Future Barite Statistics, by County
22-2 Estimated Future Barite Statistics, by Hydrographic Region
23-1 Estimated Future Clay Statistics, by County
23-2 Estimated Future Clay Statistics, by Hydrographic Region
24-1 Estimated Future Diatomite Statistics, by County
24-2 Estimated Future Diatomite Statistics, by Hydrographic Region
25-1 Estimated Future Fluorspar Statistics, by County
25-2 Estimated Future Fluorspar Statistics, by Hydrographic Region
26-1 Estimated Future Refractories Statistics, by County
26-2 Estimated Future Refractories Statistics, by Hydrographic Region
27-1 Estimated Future Industrial Sand Statistics, by County
27-2 Estimated Future Industrial Sand Statistics, by Hydrographic Region
28-1 Sand and Gravel Consumption in the United States, 1968
28-2 Estimated Future Sand and Gravel Statistics, by County
28-3 Estimated Future Sand and Gravel Statistics, by Hydrographic Region
29-1 Materials Considered as Stone
29-2 Uses of Crushed Stone in the United States during 1968
29-3 Stone Production in Nevada during 1970
29-4 Estimated Future Stone Statistics, by County
29-5 Estimated Future Stone Statistics, by Hydrographic Region
30-1 Estimated Future Talc, Soapstone and Pyrophyllite Statistics, by County
30-2 Estimated Future Talc, Soapstone and Pyrophyllite Statistics, by Hydrographic Region
31-1 Estimated Future Vermiculite Statistics, by County
31-2 Estimated Future Vermiculite Statistics, by Hydrographic Region
32-1 Estimated Future Zeolite Statistics, by County
32-2 Estimated Future Zeolite Statistics, by Hydrographic Region
33-1 Miscellaneous Commodities
34-1 Estimated Future Gem and Semiprecious Stones Statistics, by County
34-2 Estimated Future Gem and Semiprecious Stones Statistics, by Hydrographic Region
35-1 Estimated Future Geothermal Resources Statistics, by County
Estimated Future Geothermal Resources Statistics, by Hydrographic Region
Estimated Future Petroleum and Natural Gas Statistics, by County
Estimated Future Petroleum and Natural Gas Statistics, by Hydrographic Region
Estimated Future Saline Playa Product Statistics, by County
Estimated Future Saline Playa Product Statistics, by Hydrographic Region
Estimated Future Total-rock Component Product Statistics, by County
Estimated Future Total-rock Component Product Statistics, by Hydrographic Region
Carson City Estimated Future Mineral Production Statistics
Clark County Estimated Future Mineral Production Statistics
Churchill County Estimated Future Mineral Production Statistics
Douglas County Estimated Future Mineral Production Statistics
Elko County Estimated Future Mineral Production Statistics
Esmeralda County Estimated Future Mineral Production Statistics
Eureka County Estimated Future Mineral Production Statistics
Humboldt County Estimated Future Mineral Production Statistics
Lander County Estimated Future Mineral Production Statistics
Lincoln County Estimated Future Mineral Production Statistics
Lyon County Estimated Future Mineral Production Statistics
Mineral County Estimated Future Mineral Production Statistics
Nye County Estimated Future Mineral Production Statistics
Pershing County Estimated Future Mineral Production Statistics
Storey County Estimated Future Mineral Production Statistics
Washoe County Estimated Future Mineral Production Statistics
White Pine County Estimated Future Mineral Production Statistics
Hydrographic Region 1 Estimated Future Mineral Production Statistics
Hydrographic Region 2 Estimated Future Mineral Production Statistics
Population projections are provided for counties and hydrographic regions in the 1970-2020 planning period. Additionally, open file small area population projections are maintained for over 100 portions of the state, including cities, towns, townships and rural areas. Consistency of projections among these various areas was obtained to gain an insight into when and where and in what amounts future water needs will occur.
CONTENTS

PART I Summary of Projections
Overview
Status of the State Water Plan
Purposes of this Report
Background on Projections
Introduction to Projections
Presentation of Projections
Tables, Figures and Maps
Comments

PART II The Population Projection Process
Probability Model Population Projections
Listing of Steps
The Steps in Detail

PART III Municipal and Industrial Water Use Projections
Nevada is Dynamic
Brief Summary of Historic Nevada Development
Increasing Importance of Urban Type Water Use
M & I Water Use Projections
Description of M & I Water Use
Two Basic Projection Approaches
Population and Hookups Approaches
Population Approach Selected for Most Cases
Nevada M & I Water Use Projections

References
Appendix A: Economic Activity Projections
Input-Output Model
Appendix B: Some Places to Obtain Population Data
Appendix C: Explanation of Map in Cover Pocket
Detailed Distribution of Population
Present and Future Uses

LIST OF FIGURES

Figure 1-1 Nevada Population, 1920-2020
Figure 1-2 Nevada State Population Components, Urban and Rural, 1920-2020
Figure 1-3 Triangle Chart: Percent of Nevada Population for Size of Place Groupings, Urban and Rural, 1920-2020
Figure 1-4 Urban and Rural Number of Places Above 1,000 Population, 1920-2020
Figure 2-1 County Growth Patterns, 1920-2020
Figure 2-2 County Growth Patterns, 1920-2020
Figure 2-3 County Growth Patterns, 1920-2020
Figure 2-4 County Growth Patterns, 1920-2020
Figure 2-5 Washoe County Population Growth Pattern, 1890-1970
Figure 2-6 Aerial Views of Recent Las Vegas Growth Pattern
Figure 2-7 Ratios of Population in County Groupings
 C/W, W/R, R/C and Nevada State Population
Figure 2-8 Population of County Groupings C, W, R and
 Census Years, 1920-2020
Figure 2-9 Population and Percent of Nevada Population
 for County Groupings C, W, R
Figure 2-10 Percent of Nevada Population for County Group-
 ings C, W, R and Census Years, 1920-2020
Figure 2-11 Population of County Groupings C, W, R and
 Nevada State Population
Figure 2-12 Dynamics of Nevada Population Growth, 1920-2020
Figure 2-13 The Triangle Chart: Percent of Nevada Popula-
 tion for County Groupings, C, W, R, 1920-2020
Figure 2-14 United States General Fertility Rate and
 Percent Natural Increase, 1960 Decade
Figure 2-15 United States General Fertility Rate and Crude
 Birth Rate, 1935-1970
Figure 2-16 United States Projected Population Growth Rates,
 Series B-C-D-E, 1970-2020. Also General
 Fertility Rate and Percent Net Growth Rate
Figure 2-17 Equilibrium Diagram and Migration Effects
 Between Nevada and California
Figure 3-1 M & I Water Use Diagram
 (Once through the system)
Figure 3-2 Gallons Per Hookup Per Day and Time, Las Vegas
 and Reno Areas

LIST OF MAPS
Map 1-1 Census District Patterns, 1970
Map 1-2 Population Density Perspective, 1970
Map 1-3 County Growth Patterns, 1920-2020
Map 1-4 Hydrographic Region Growth Patterns, 1970-2020
Cover Pocket Map: Water and Related Land Resource Areas with
 Nevada Population Distribution in 1970

LIST OF TABLES
Table 1-1 High and Low County Population Growth Patterns,
 1970-2020
Table 1-2 County Population Growth Patterns, 1920-2020
Table 1-3 Urban and Rural Population Growth Patterns,
 1920-2020
Table 1-4 Hydrographic Region Population Growth Patterns,
 1970-2020
Table 1-5 High and Low Municipal and Industrial Water Use
 Growth Patterns for Clark and Washoe Counties,
 1970-2020, Compared with Table 1-6
Table 1-6 Municipal and Industrial Water Use Growth Patterns
 for Counties, 1970-2020
Table 1-7	Municipal and Industrial Water Use Growth Patterns for Hydrographic Regions, 1970-2020
Table 1-8	Per Capita Municipal and Industrial Water Use Growth Patterns for Counties, 1970-2020
Table 1-9	Per Capita Municipal and Industrial Water Use Growth Patterns for Hydrographic Regions, 1970-2020
Table 1-10	United States Population in Millions of Persons, 1920-2020, by Probability Model Solution, and Comparisons with Other Projections
Table 2-1	Similarity of County Growth Patterns
Table 2-2	Correlation of Growth Potential With Population Density
Table 2-3	Graphs for Probability Model Solution
Table 2-4	Nevada's Most Probable Population by Solution of the Population Form of the Probability Model
Table 2-5	Ranking of States and Divisions by Percent Urban Population, 1920 and 1970
Table 2-6	National Population in Millions by Probability Model Solution, and Comparisons with Nevada Probability Model Solution
Table 2-7	National Population Estimates in Millions According to Series B, C, D, E, X and Comparison with Probability Model Solution
Table 2-8	Nevada Population Estimates in Thousands by the Bureau of the Census, and Comparison with the Probability Model Solution
Table 2-9	Population in Millions for the Nation and Nevada, by Probability Model, Bureau of Economic Analysis, and Bureau of the Census
Table 2-10	Relative Work Force Well Being and Migration Conditions, Nevada and California
Table 2-11	Nevada Old Age, Survivors, Disability and Health Insurance (OASDHI) Payments
Table 3-1	Projected Nominal Values of Persons Per Hookup, Las Vegas and Reno Areas
Table 3-2	Comparisons of Water Use in 1970 for Several States and the Nation
Table 3-3	Estimated Number of Places Under 1,000 Population in Nevada, and the Population Therein, 1970

A wide diversity of potential applications for desalting is considered, including possible preservation of Walker Lake's quality at a level better than exists today. The greatest potential for immediate application of desalting in Nevada is for an individual ranch domestic water supply or other small need where good quality water supplies are not available. In addition, Brady's Hot Springs, between Reno and Lovelock, is assessed as a source of geothermal energy to provide both desalted water and electric energy. Costs would probably be applicable to other geothermal areas.

CONTENTS

1. BACKGROUND
 The Nevada State Water Plan
 Nevada Hydrologic Setting
 Topography
 Rivers and Stream
 Precipitation
 Water Quality
 Method of Approach
 Organization of the Report
 Acknowledgements
 Glossary of Terms
 Conversion Table (mgd to 000's of ac-ft/yr)
 Conversion Table (¢/kgal and $/ac-ft)

2. SELECTION OF STUDY SITUATIONS

3. DESALTING PROCESSES AND COSTING PROCEDURES
 Assumptions and Rationale
 Primary References
 Assumptions
 Water Quality Standards
 Selection of Desalt Processes
 Product Water Blending
 Plant Capacity Determination
 Brine Disposal Considerations
 Pond Evaporation
 Spray Evaporation
 Conventional Water Resource Development
 Selected References

4. BENEFITS AND FINANCING
 Tangible Economic Benefits
 Intangible Benefits
 Health and Nutritional Factors
 Commerce and Regional Economic Development
 The Effect of Phasing Desalt Plant Installation
 Funding and Financing Desalt Plants
 Large Desalt Plant Applications
 Small Ranch-Type Applications
Selected References

5. THE POTENTIAL FOR DESALTING IN RANCH-TYPE LOCATIONS
 The Availability of Small Desalt Plants
 Selection Factors in Choosing a Small Desalt Plant
 Water Quality Considerations
 Ranch-Type Desalt Costs
 Advantages for Desalting
 Selected References

6. THE POTENTIAL FOR DESALTING IN A GEOTHERMAL APPLICATION
 Background
 Objectives and Assumptions
 Technical Considerations
 The Desalt Investigation
 A Dual-Purpose Plant for Brady's Hot Springs
 Cost Data
 Comparison with Conventional Resources
 Advantages of Desalting
 Selected References

7. THE POTENTIAL FOR DESALTING AT FALLON AND CARSON SINK
 The Overview
 Truckee-Carson Irrigation District
 Truckee River Water Uses
 The Stillwater Wildlife Management Area
 The City of Fallon
 Background Data
 Water Resources and Water Quality
 Water Quality Considerations
 Current and Projected Demands
 Desalt Plant Factors-Dual-Purpose Plant
 Plant Design Capacity
 Feedwater Supply
 Nuclear Power Plant Siting
 Brine Disposal
 Low Cost Data
 Desalt Costs for the Large-Scale, Dual-Purpose Plant
 at Carson Sink
 Desalt Plant Factors - 16.67-MGD Plant at Fallon
 Plant Design Capacity
 Feedwater Supply
 Brine Disposal
 Local Cost Data
 Desalt Cost Comparisons for the 16.67-MGD Plant at Fallon
 Comparison of Various Processes
 Electrodialysis at Fallon (16.67 mgd)
 Annual Costs at Fallon, 16.7-mgd ED Plant
 Desalt Plant Factors - 5.0 MGD Plant for Fallon
 Desalt Cost Comparisons for the 5.0-MGD Plant for Fallon
 Electrodialysis at Fallon (5.0 mgd)
 Annual Costs at Fallon, 5.0-mgd Plant
Advantages of Desalting
Selected References

8. THE POTENTIAL FOR DESALTING AT GABBS
Background Data
General Description
Present Water and Waste Treatment Facilities
Water Quality Considerations
Current Projected Demand
Desalt Plant Factors
Plant Design Capacity
Feedwater Supply
Brine Disposal
Local Cost Data
Desalt Cost Comparisons at Gabbs
Comparison of Various Processes
Electrodialysis at Gabbs
Alternative Conventional Resources
Cost Comparison in Gabbs
Advantages for Desalting
Selected References

9. THE POTENTIAL FOR DESALTING AT HAWTHORNE
Background Data
General Description
Present Water and Waste Treatment Facilities
Water Quality Consideration
Current and Projected Demands
Desalt Plant Factors
Plant Design Capacity
Feedwater Supply
Brine Disposal
Low Cost Data
Desalt Cost Comparisons at Hawthorne
Comparison of Various Processes
Electrodialysis at Hawthorne
Alternative Conventional Resources
Source
Costs
Cost Comparisons at Hawthorne
Advantages for Desalting
Selected References

10. THE POTENTIAL FOR DESALTING AT LOGANDALE AND MOAPA
Background Data
General Description
Present Water and Waste Treatment Facilities
Water Quality Considerations
Current and Projected Demands
Desalt Plant Factors
Plant Design Capacity
Feedwater Supply
Brine Disposal
Local Cost Data
Desalt Cost Comparisons in Lower Moapa Valley
Comparison of Various Processes
Reverse Osmosis in the Lower Moapa Valley
Alternative Conventional Resources
Sources
Costs for Warm Springs Conventional Alternate
Costs for Developing Lake Mead Water
Cost Comparison in the Lower Moapa Valley
Advantages of Desalting
Selected References

11. THE POTENTIAL FOR DESALTING AT MESQUITE AND BUNKERVILLE
Background Data
General Description
Present Water and Waste Treatment Facilities
Water Quality Considerations
Current and Projected Demands
Desalt Plant Factors
Plant Design Capacity
Feedwater Supply
Brine Disposal
Local Cost Data
Desalt Cost Comparisons at Mesquite/Bunkerville
Comparison of Various Processes
Reverse Osmosis at Mesquite/Bunkerville
Alternative Conventional Resources
Source
Costs
Cost Comparisons at Mesquite/Bunkerville
Advantages of Desalting
Selected References

12. THE POTENTIAL FOR DESALTING AT WALKER LAKE
Background Data
General Description
Walker Lake Area and Stage
Water Quality Considerations
Current and Projected Requirements
Lake Volume and Salinity Projections
Desalt Plant Factors
Plant Design Capacity
Feedwater Supply
Product Water Discharge
Brine Disposal
Local Cost Data
Desalt Cost Comparisons at Walker Lake
Comparison of Various Processes
Reverse Osmosis at Walker Lake
Advantages for Desalting
Selected References

13. THE POTENTIAL FOR DESALTING IN OTHER APPLICATIONS IN NEVADA
Sites Studied in Preliminary Stages
Other Areas for Desalting Applications

APPENDICES
A. Desalt Costing Background
B. Benefits and Financing Background Data
C. Backup Data for Ranch-Type Applications
D. Backup Data for Brady's Hot Springs
E. Backup Data for Fallon and Carson Sink
F. Backup Data for Gabbs
G. Backup Data for Hawthorne
H. Backup Data for Logandale and Moapa
I. Backup Data for Mesquite and Bunkerville
J. Backup Data for Walker Lake
K. Bibliography

LIST OF ILLUSTRATIONS

Figure
1 Nevada Hydrographic Regions
2 Nevada Desalt Study Sites
3 Nevada Desalt Study Sites, Ranch-Type Applications
4 A Small Desalt Plant for Ranch-Type Applications
5 Schematic Flow Diagram for Small RO Desalt System
6 State of Nevada, Known Geothermal Resource Areas
7 Nevada Desalt Study Sites (Brady's Hot Springs)
8 Overall Schematic Flow Diagram of Geothermal Dual-Purpose Plant
9 Nevada Desalt Study Sites (Fallon and Carson Sink)
10 Truckee and Carson River Basins
11 Waterfowl Habitat at Stillwater Wildlife Management Area
12 Dual-Purpose Desalt/Power Plant and Well Field Sites (Carson Sink)
13 Dual-Purpose Desalt System Layout (Carson Sink)
14 Transmission Mains (Carson Sink)
15 Desalt Plant and Well Field Sites (Fallon)
16 Desalt System Layout (ED Process at Fallon, 16.7 mgd)
17 Desalt System Layout (ED Process at Fallon, 5.60 mgd)
18 Nevada Desalt Study Sites (Gabbs)
19 Conventional Water Sources (Gabbs)
20 Desalt Plant Site (Gabbs)
21 Desalt System Layout (ED Process at Gabbs)
22 Nevada Desalt Study Sites (Hawthorne)
23 Desalt Plant Site (Hawthorne)
24 Desalt System Layout (ED Process at Hawthorne)
25 Whisky Flat Valley (Conventional Water for Hawthorne)
26 Nevada Desalt Study Sites (Logandale/Moapa)
27 Upper Moapa Valley: Warm Springs - Moapa - Logandale
28 Lower Moapa Valley: Lake Mead - Logandale - Overton
29 Desalt System Layout (RO Process at Logandale)
30 Lake Mead Water - Conventional Resource Development (Lower Moapa Valley)
31 Nevada Desalt Study Sites (Mesquite/Bunkerville)
32 Desalt Plant Site (Mesquite/Bunkerville)
33 Desalt System Layout (RO Process at Mesquite)
34 Virgin River Valley - Conventional Water Resource Development (Mesquite/Bunkerville)
35 Nevada Desalt Study Sites (Walker Lake)
36 View of West Shoreline of Walker Lake
37 Volume-TDS Relationship Versus Time (Walker Lake, 1972-2272)
38 Effect of Desalting of TDS (Walker Lake, 1972-2272)
39 Desalt Plant Sites (Walker Lake)
40 Desalt System Layout (RO Process at Walker Lake)
41 Nevada Desalt Study Sites

LIST OF TABLES

Table
1 Validity Limits for Desalt Calculations in OSW 555
2 Effect of Phasing Construction on Costs
3 Small Desalt Plant Cost Ranges
4 Small Desalt Plant Cost Data
5 Known Geothermal Resource Areas
6 Desalt Costs at Brady’s Hot Springs
7 Future Water Demand at Fallon
8 Desalt Cost Comparisons at Carson Sink
9 Desalt Costs at Carson Sink
10 Desalt Plant Capacities at Fallon
11 Desalt Cost Comparisons at Fallon
12 Desalt Costs at Fallon (16.7-mgd ED Plant)
13 Desalt Cost Comparisons at Fallon
14 Desalt Costs at Fallon (5.0-mgd ED Plant)
15 Future Water Demands at Gabbs
16 Desalt Plant Capacities at Gabbs
17 Desalt Cost Comparisons at Gabbs
18 Desalt Costs at Gabbs
19 Conventional Costs at Gabbs
20 Comparison of Desalt with Conventional Costs at Gabbs
21 Future Water Demand at Hawthorne
22 Desalt Plant Capacities at Hawthorne
23 Desalt Cost Comparisons at Hawthorne
24 Desalt Costs at Hawthorne
25 Conventional Costs at Hawthorne
26 Comparison of Desalt with Conventional Costs at Hawthorne
27 Future Water Demand at Lower Moapa Valley
28 Desalt Plant Capacities at Lower Moapa Valley
29 Desalt Cost Comparisons at Lower Moana Valley
30 Desalt Costs at Logandale/Moapa
31 Conventional Costs at Moapa Valley - Warm Springs Well Water
32 Conventional Costs at Moapa Valley - Lake Mead Water
Estimates of water-based future use of Nevada's fish and wildlife resources are presented for the counties and hydrographic regions. Physical distribution of all game fish and animals are presented along with selected nongame species.

CONTENTS

Acknowledgements
Summary
Introduction
General
Public Information and Education
Forest and Range Rehabilitation
Definition and Explanation of Terms
Historical Dynamics
Law Enforcement
Economics
Methods and Procedures
Compilation of Data
Projections
Water
Fisheries
General
Fish Data Projections
Big Game
General
Mule Deer
Mule Deer Data Projections
Antelope
Antelope Data Projections
Bighorn Sheep
Bighorn Sheep Data Projections
Elk
Elk Data Projections
Mountain Lion
Mountain Lion Projections
Black Bear
Mountain Goat

Small Game
General
Sage Grouse
Sage Grouse Data Projections
Blue Grouse
Blue Grouse Data Projections
Pheasant
Pheasant Data Projections
Partridge
Partridge Data Projections
Quail
Quail Data Projections
Rabbit
Rabbit Data Projections
Merriam's Turkey
Exotic Game Birds

Migratory Game Birds
General
Waterfowl
Waterfowl Data Projections
Dove
Dove Data Projections

Furbearers
General
Beaver
Muskrat
River Otter
Mink
Marten
Raccoon
Coyote, Bobcat, Red and Gray Fox

License and Tags
General and Data Projections

Nongame Species
General
Rare and Endangered Species
Raptors
Wild Horses
Miscellaneous Wildlife

Wildlife Related Activities
General
Bird Watching
Photography
Wildlife Observation

Appendix A
Categorical Listing of Fish and Wildlife

Appendix B
Historical Fish and Wildlife Data, Statewide, 1960 to 1971

Appendix C
Inventory of National Wildlife Refuges and State Wildlife Management Areas
Inventory of Important Waterfowl Habitat Areas
Inventory of Fisheries Facilities
Inventory of Game Enclosures

Appendix D
Inventory of Statistical Data for the Streams and Lakes of Nevada ... (under separate cover)

Bibliography

LIST OF FIGURES

1 White Pelican
2 Nevada State Park System Wildlife Information Signs
3 Multiple Use Spring Development
4 Water Spreader
5 Charco Pit
6 Devil Pupfish
7 Desert Bighorn Sheep
8 Ring-Necked Pheasant
9 Chukar Partridge
10 California Quail
11 Desert Cottontail
12 Canada Goose
13 Mourning Dove
14 Coyote
15 Raccoon
16 Longtail Weasel
17 Burrowing Owl
18 Golden-Mantled Squirrel
19 Red Tailed Hawk
20 Ringtailed Cat
21 Blue-Gray Gnatcatcher
22 Shorttail Weasel

LIST OF GRAPHS

1 All Fish Data Projections, Resident and Nonresident Anglers, Angler Days and Stocking, Statewide, 1970-2020
2 All Game Data Projections, Resident and Nonresident Hunters, Hunter Days and Harvest, Statewide, 1970-2020
3 All Game Data Projections, Populations, Statewide, 1970-2020
4 All Fish and Game Data Projections, Resident and Nonresident Anglers and Hunters, Angler and Hunter Days, Statewide, 1970-2020
5 Mule Deer Historical Data, Resident and Nonresident Harvest, Statewide, 1960-1971
6 Partridge Historical Data, Resident and Nonresident Hunters, Hunter Days and Harvest, Statewide, 1960-1970
7 Dove Historical Data, Resident and Nonresident Hunters, Hunter Days and Harvest, Statewide, 1960-1970
8 All Fish Data Projections, Resident and Nonresident Anglers, Angler Days and Stocking, Statewide, 1970-2020
9 Big Game Data Projections, Resident and Nonresident Hunters, Hunter Days and Harvest, Statewide, 1970-2020
10 Big Game Data Projections, Antelope, Bighorn Sheep, Elk and Mountain Lion Populations, Statewide, 1970-2020
11 Big Game Data Projections, Mule Deer and all Big Game Populations, Statewide, 1970-2020
12 Mountain Lion Historical Depredation Harvest, Statewide, 1920-1970
13 Small Game Data Projections, Resident and Nonresident Hunters, Hunter Days and Harvest, Statewide, 1970-2020
14 Small Game Data Projections, All Populations, Statewide, 1970-2020
15 Migratory Game Bird Data Projections, Resident and Nonresident Hunters, Hunter Days and Harvest, Statewide, 1970-2020
16 Migratory Game Bird Data Projections, All Populations, Statewide, 1970-2020

LIST OF MAPS

MAP
1 Nevada Counties and Hydrographic Regions
2 Game Fish - Rainbow Trout
3 Game Fish - Brook Trout and Brown Bullhead
4 Game Fish - Cutthroat Trout
5 Game Fish - Brown Trout
6 Game Fish - White Catfish, Dolly Varden Trout, Walleye, Mackinaw Trout and Silver Salmon
7 Game Fish - Green Sunfish, Kokanee Salmon, Golden Trout and Northern Pike
8 Game Fish - Whitefish and Striped Bass
9 Game Fish - White Bass, Largemouth Black Bass and Smallmouth Black Bass

-35-
10 Game Fish - White Crappie and Black Crappie
11 Game Fish - Sacramento Perch and Yellow Perch
12 Game Fish - Bluegill
13 Game Fish - Black Bullhead
14 Game Fish - Channel Catfish
15 Rare and Endangered Fish Species
16 Bullfrog
17 Mule Deer Habitat
18 Antelope, Bighorn Sheep, Black Bear, Elk and Mountain Goat
19 Mountain Lion
20 Sage Grouse and Merriam's Turkey
21 Blue Grouse
22 Ring-Necked Pheasant
23 Chukar Partridge
24 Hungarian Partridge
25 Quail Species
 California, Gambel's, Scaled and Mountain
26 Desert Cottontail
27 Mountain Cottontail
28 Pygmy Rabbit
29 Miscellaneous Birds
 Band-tailed Pigeon, Ruffed Grouse, Seesee Partridge,
 Himalayan Snow Partridge, White Faced Glossy
 Ibis and White-winged Pheasant
30 Waterfowl Areas and Major Migratory Waterfowl Flyways
31 Coot, Duck, Goose and Whistling Swan
32 Trumpeter Swan
33 Gallinule
34 Mourning Dove
35 White-winged Dove
36 Beaver
37 Muskrat
38 River Otter
39 Mink
40 Marten
41 Raccoon
42 Bobcat and Coyote
43 Red Fox
44 Gray Fox
45 Greater Sandhill Crane, Peregrine Falcon, Prairie Falcon and Spotted Bat
46 Vegas Valley Leopard Frog
47 Desert Tortoise
48 Gila Monster
49 Eagle, Falcon, Hawk and Owl
50 Longtail Weasel
51 Shorttail Weasel
52 Ringtail Cat
53 Douglas, Flying and Gray Squirrels and Mountain Beaver (aploclontia)
Snowshoe Rabbit
Swift (kit) Fox
Pika
Roadrunner
White-tailed Jackrabbit
Brant, Sora Rail and Wilson's Snipe
Black-billed Magpie, Crow, Raven, House Sparrow, Kingfisher, Nighthawk, Starling, Turkey Vulture and White Pelican
Badger, Blacktailed Jackrabbit, Porcupine, Spotted and Striped Skunks
Federal and State Wildlife Facilities

LIST OF TABLES

1 All Fish and Game Data Projections - Resident and Nonresident Anglers and Hunters, Angler and Hunter Days, Harvest, Fish Stocking, Game Populations, Statewide, 1970-2020
2 Game Fish, Big Game, Small Game, Migratory Game Bird Data Projections - Resident and Nonresident Anglers and Hunters, Angler and Hunter Days, Harvest, Fish Stocking, Game Populations, Statewide, 1970-2020
3 Angler and Hunter Days Data Projections - Comparison by Type Study
4 Nevada Human Population Projections - Statewide, 1970-2020
5 Nevada Land and Water Statistics
6 Nevada Fish and Game Revenue - Fiscal Year 1970-1971
7 Range Vegetation Conversions - Nevada, by U. S. Bureau of Land Management, to May 1973
8 Summary of Law Enforcement Activities, Nevada Department of Fish and Game, Statewide, 1955-1972
9 Arizona Fishing and Hunting Expenditures - Combined Resident and Nonresident, per Man-day - 1965 Compared with 1960
10 Average Nevada Resident Expenditures for Big Game Species, 1967
11 Nevada Big Game Hunters Expenditures, by Resident and Nonresident, 1967
12 Oregon Big Game Hunter Expenditures, by Species, 1968
13 Nevada Big Game Hunter Expenditures by Categories, per Trip, 1967
14 Average Nonresident Big Game Hunter Expenditures, by Origin, 1967
15 Fish Output, by Nevada Stations, Reared and Fingerling, July 1, 1970 through June 30, 1971
16 Trout Received by Selected Nevada Lakes, 1971
17 Warm Water Fish Stocking, by County, July 1, 1970 to June 30, 1971
18 Average Minimum C.F.S. for Cold Water Fisheries
19 Tentative Flow Recommendations for Major Nevada Rivers
20 Biological Stream Rating System for Cold Water Fisheries
21 Average Biological Stream Rating for Cold Water Fisheries
22 Fish Data Projections - Resident Anglers and Angler Days, by County, 1970-2020
23 Fish Data Projections - Nonresident Anglers and Angler Days, by County, 1970-2020
24 Fish Data Projections - Resident and Nonresident Anglers, Angler Days, Stocking, by County, 1970-2020
25 Fish Data Projections - Resident Anglers and Angler Days, by Hydrographic Region, 1970-2020
26 Fish Data Projections - Nonresident Anglers and Angler Days, by Hydrographic Region, 1970-2020
27 Fish Data Projections - Resident and Nonresident Anglers, Angler Days and Stocking, by Hydrographic Region, 1970-2020
28 Characteristics of Nevada Big Game Hunters, 1967
29 Nevada Big Game Hunters, Type of Land Hunted, 1967
30 Other Hunting Activities in which Nevada Resident and Nonresident Big Game Hunters Participated during 1967
31 Other Recreational Activities in which Nevada Big Game Hunters Participated while on Hunting Trip, 1968
32 Mule Deer Data Projections - Resident Hunters, Hunter Days and Harvest, by County, 1970-2020
33 Mule Deer Data Projections - Nonresident Hunters, Hunter Days and Harvest, by County, 1970-2020
34 Mule Deer Data Projections - Resident and Nonresident Hunters, Hunter Days, Harvest and Populations, by County, 1970-2020
35 Mule Deer Data Projections - Resident Hunters, Hunter Days and Harvest, by Hydrographic Region, 1970-2020
36 Mule Deer Data Projections - Nonresident Hunters, Hunter Days and Harvest, by Hydrographic Region, 1970-2020
38 Antelope Data Projections - Resident Hunters, Hunter Days, Harvest and Populations, by County, 1970-2020
40 Bighorn Sheep Data Projections - Resident Hunters, Hunter Days and Harvest, by County, 1970-2020
41 Bighorn Sheep Data Projections - Nonresident Hunters, Hunter Days and Harvest, by County, 1970-2020
42 Bighorn Sheep Data Projections - Resident and Nonresident Hunters, Hunter Days, Harvest and Populations, by County, 1970-2020
43 Bighorn Sheep Data Projections - Resident Hunters, Hunter Days and Harvest, by Hydrographic Region, 1970-2020

-38-
Bighorn Sheep Data Projections - Nonresident Hunters, Hunter Days and Harvest, by Hydrographic Region, 1970-2020

Elk Data Projections - Resident Hunters, Hunter Days, Harvest and Populations, by County, 1970-2020

Elk Data Projections - Resident Hunters, Hunter Days, Harvest and Populations, by Hydrographic Region, 1970-2020

Mountain Lion Data Projections - Resident Hunters, Hunter Days and Harvest, by County, 1970-2020

Mountain Lion Data Projections - Nonresident Hunters, Hunter Days and Harvest, by County, 1970-2020

Mountain Lion Data Projections - Resident and Nonresident Hunters, Hunter Days, Harvest and Populations, by County, 1970-2020

Mountain Lion Data Projections - Resident Hunters, Hunter Days and Harvest, by Hydrographic Region, 1970-2020

Mountain Lion Data Projections - Nonresident Hunters, Hunter Days and Harvest, by Hydrographic Region, 1970-2020

Mountain Lion Data Projections - Resident and Nonresident Hunters, Hunter Days, Harvest and Populations, by Hydrographic Region, 1970-2020

Mountain Lion Depredation Harvest Projections - by County, 1970-2020

Mountain Lion Depredation Harvest Projections - by Hydrographic Region, 1970-2020

Blue Grouse Data Projections - Resident Hunters, Hunter Days, Harvest and Populations, by County, 1970-2020

Pheasant Data Projections - Resident Hunters, Hunter Days, Harvest and Populations, by County, 1970-2020

Pheasant Data Projections - Resident Hunters, Hunter Days, Harvest and Populations, by Hydrographic Region, 1970-2020

Partridge Data Projections - Resident Hunters, Hunter Days and Harvest, by County, 1970-2020

Partridge Data Projections - Nonresident Hunters, Hunter Days and Harvest, by County, 1970-2020
Partridge Data Projections - Resident and Nonresident Hunters, Hunter Days, Harvest and Populations, by County, 1970-2020
Partridge Data Projections - Resident Hunters, Hunter Days and Harvest, by Hydrographic Region, 1970-2020
Partridge Data Projections - Nonresident Hunters, Hunter Days and Harvest, by Hydrographic Region, 1970-2020
Quail Data Projections - Resident Hunters, Hunter Days and Harvest, by County, 1970-2020
Quail Data Projections - Nonresident Hunters, Hunter Days, and Harvest, by County, 1970-2020
Quail Data Projections - Resident and Nonresident Hunters, Hunter Days, Harvest and Populations, by County, 1970-2020
Quail Data Projections - Resident Hunters, Hunter Days and Harvest, by Hydrographic Region, 1970-2020
Quail Data Projections - Nonresident Hunters, Hunter Days and Harvest, by Hydrographic Region, 1970-2020
Quail Data Projections - Resident and Nonresident Hunters, Hunter Days, Harvest and Populations, by Hydrographic Region, 1970-2020
Rabbit Data Projections - Resident Hunters, Hunter Days and Harvest, by County, 1970-2020
Rabbit Data Projections - Nonresident Hunters, Hunter Days and Harvest, by County, 1970-2020
Rabbit Data Projections - Resident and Nonresident Hunters, Hunter Days, Harvest and Populations, by County, 1970-2020
Rabbit Data Projections - Resident Hunters, Hunter Days and Harvest, by Hydrographic Region, 1970-2020
Rabbit Data Projections - Nonresident Hunters, Hunter Days, and Harvest, by Hydrographic Region, 1970-2020
Rabbit Data Projections - Resident and Nonresident Hunters, Hunter Days, Harvest and Populations, by Hydrographic Region, 1970-2020
Waterfowl Data Projections - Resident Hunters, Hunter Days and Harvest, by County, 1970-2020
Waterfowl Data Projections - Nonresident Hunters, Hunter Days and Harvest, by County, 1970-2020
Waterfowl Data Projections - Resident and Nonresident Hunters, Hunter Days, Harvest and Populations, by County, 1970-2020
Waterfowl Data Projections - Resident Hunters, Hunter Days and Harvest, by Hydrographic Region, 1970-2020
Waterfowl Data Projections - Nonresident Hunters, Hunter Days and Harvest by Hydrographic Region, 1970-2020
-40-
Waterfowl Data Projections - Resident and Nonresident Hunters, Hunter Days, Harvest and Populations, by Hydrographic Region, 1970-2020
Dove Data Projections - Resident Hunters, Hunter Days and Harvest, by County, 1970-2020
Dove Data Projections - Nonresident Hunters, Hunter Days and Harvest, by County, 1970-2020
Dove Data Projections - Resident and Nonresident Hunters, Hunter Days, Harvest and Populations, by County, 1970-2020
Dove Data Projections - Resident Hunters, Hunter Days and Harvest, by Hydrographic Region, 1970-2020
Dove Data Projections - Nonresident Hunters, Hunter Days and Harvest, by Hydrographic Region, 1970-2020
Dove Data Projections - Resident and Nonresident Hunters, Hunter Days, Harvest and Populations, by Hydrographic Region, 1970-2020
Furbearer Harvest, 1970-1971
License and Tag Data Projections - Resident and Nonresident Fishing and Hunting License and Tags, Statewide, 1970-2020
Nevada Hunting and Fishing and Tag Costs - Resident and Nonresident, 1973
Annual Wildlife Observation Use in Lahontan Valley, 1965-1970

This appendix, published under separate cover from the main report, contains an inventory of over 1,500 Nevada waters and listed by hydrographic region. A correlation is shown between minimum streamflow and biologic ratings made by the Nevada Department of Fish and Game for over 400 streams.

CONTENTS

Introduction
Definitions
Key and Explanations to Columns
Key to the Biological Stream Rating System for Cold Water Fisheries
Key to the Average Biological Stream Rating System for Cold Water Fisheries
Key to the Average Minimum c.f.s. for Cold Water Fisheries
Key to Game Fish Species

Totals
Totals (all waters) for Nevada Streams - Totals by Hydrographic Regions Lakes, reservoirs and ponds - Totals by Hydrographic Regions

Inventory
Hydrographic Region 1 Waters
Hydrographic Region 2 Waters
Hydrographic Region 3 Waters
Hydrographic Region 4 Waters
Hydrographic Region 5 Waters
Hydrographic Region 6 Waters
Hydrographic Region 7 Waters
Hydrographic Region 8 Waters
Hydrographic Region 9 Waters
Hydrographic Region 10 Waters
Hydrographic Region 11 Waters
Hydrographic Region 12 Waters
Hydrographic Region 13 Waters
Hydrographic Region 14 Waters

Figures
Figure 1. Map Illustrating Counties, Hydrographic Regions, Hydrographic Areas and Water Resources Inter-basin Flows

Estimates of future water-based recreational activity and associated water requirements, along with economic value, are provided for the counties and hydrographic regions. This information relates only to city, county, state and federal owned or controlled areas in Nevada. A map showing Water-Related Outdoor Recreation Areas is included.

CONTENTS

Summary and Conclusions
 Summary
 Conclusions

-42-
Introduction
 Scope and Objectives
 Nevada's Outdoor Recreation Environment
 Land Resources
 Water Resources
 Climate
 Other Nevada Outdoor Recreation Plans
Definition of Terms
 Definitions
 Recreation Visit
 Activity-Day
 Water-Related Recreation Areas
 Day Visit
 Overnight Visit
 Resident
 Nonresident
 Deficiencies
 Type of Site
 Hydrographic Region
 Surface Water
 Ground Water
 Municipal Water
 Consumptive Use
 Nonconsumptive Use
 Units of Measurement
Methods and Procedures
 Primary Data Collection
 Rivers and Streams
 Lakes and Reservoirs
 City and County Parks and Other Recreational Facilities
 Nevada State Parks System
 Federal Facilities
 Secondary Data Collection
 Data Analysis
Current Recreational Use of Land and Water
 Outdoor Recreation Areas
 County Areas
 Hydrographic Regions
 Types of Sites
 Use of Outdoor Recreation Areas
 Recreation Use by Counties
 Recreation Use by Hydrographic Regions
 Recreational Activities
 Recreational Stream Length
Estimated Value of Public Recreation in Nevada
 Estimation of Recreation Values
 Other Approaches
 Unit Day Value Approach
 Schedule of Monetary Unit Values
Nevada Recreation Values
Values by County
Values by Hydrographic Region
State Values

Land and Water Use for Outdoor Recreation
Projected Use of Nevada's Public Recreational Resources
Projected Visitor-Days Recreation Use in Nevada
Projections Based on Agency Estimates of Future Use
Projections Based Upon Future Population

Future Land and Water Needs for Water-Related Outdoor Recreation
Projected Land and Water Needs
City and County Parks
Golf Courses
Lakes and Reservoirs
Proposed Reservoirs

Problem Areas
Water Quality
Access to Lakes, Streams and Rivers
Access to Public Lands
Subdivision Planning for Outdoor Recreation
Wild and Scenic Streams and Rivers
Floodplain Zoning
Needs for Recreational Facilities in Urban Areas
Water Rights for Wildlife
Water Rights for Outdoor Recreation Areas
Minimum Flows and Minimum Pools for Streams and Lakes

Appendix
Questionnaire
Bibliography

LIST OF TABLES

TABLE
1 Summary of Nevada's Water Resources
2 Total Number of Outdoor Recreation Areas in each County
 by Type of Site, Nevada, 1970
3 Total Number of Outdoor Recreation Areas in each Hydro-
 graphic Region by Type of Site, Nevada, 1970
4 Total Visitor-Days Attendance at Recreation Sites for
 Residents and Nonresidents by Hydrographic Region, 1970
5 Total Visitor-Days Attendance at Recreation Sites for
 Residents and Nonresidents by County, 1970
6 Three Most Frequent Recreational Activities, by Type of
 Site, State of Nevada
7 Streams Surveyed by County, Nevada
8 Streams Surveyed by Hydrographic Region, Nevada
9 Schedule of Monetary Unit Values
10 Estimated Value of a Recreation Visit in Nevada, by Type
 of Site, by County
Total Estimated Value of 1970 Recreation Visits, by Type of Site, by County, Nevada
Estimated Value of a Recreation Visit in Nevada, by Type of Site, by Hydrographic Region
Total Estimated Value of 1970 Recreation Visits, by Type of Site, by Hydrographic Region, Nevada
Total Estimated Value of 1970 Recreation Visits, by Type of Site, State of Nevada
Total Acres and Consumptive Use of Water for Outdoor Recreation in 1970 by Type of Site, State of Nevada
Total Acres and Consumptive Use of Water for Outdoor Recreation in 1970 by County for the State of Nevada
Total Acres and Consumptive Use of Water in Outdoor Recreation in 1970 by Hydrographic Region, State of Nevada
Outdoor Recreation Attendance at Nevada Water-Based Recreation Sites by Counties for 1970 and Projected to 1980, 2000, and 2020
Outdoor Recreation Attendance at Nevada Water-Based Recreation Sites by Hydrographic Regions for 1970 and Projected to 1980, 2000, and 2020
Projected Future Recreation Use Based Upon Population Projections and Current Use
Estimates of Current and Projected Land Needs and Deficiencies for City and County Parks by County, Nevada
Estimates of Current and Projected Consumptive Water Needs for City and County Parks by County, Nevada
Estimates of Current and Projected Land Needs and Deficiencies for City and County Parks by Hydrographic Region, Nevada
Estimates of Current and Projected Consumptive Water Needs for City and County Parks by Hydrographic Region, Nevada
Estimates of Current and Projected Land Needs for Publicly Owned Golf Courses by County, Nevada
Estimates of Current and Projected Consumptive Water Needs for Publicly Owned Golf Courses by County, Nevada
Estimates of Current and Projected Land Needs for Publicly Owned Golf Courses by Hydrographic Region, Nevada
Estimates of Current and Projected Consumptive Water Needs for Publicly Owned Golf Courses by Hydrographic Region, Nevada
Privately Owned Golf Courses in Nevada, by County, 1970
Private Golf Courses in Nevada, by Hydrographic Region, 1970
Estimates of Total Current and Projected Use and Water Surface Acres Needed for Boating, by County, Nevada
32 Estimates of Total Current and Projected Use and Water Surface Acres Needed for Boating, by Hydrographic Region, Nevada
33 Estimated Recreation Use at Selected Proposed Reservoir Sites, by County, Nevada
34 Estimated Recreation Use at Selected Proposed Reservoir Sites, by Hydrographic Region, Nevada
35 Existing Reservoirs Used in Projection of Use at Proposed Reservoir Sites

LIST OF FIGURES

FIGURE
1 Map of Nevada Showing Hydrographic Regions or Basins and Counties
2 Projected Water-Based Recreation Use by Anticipated Use and by Population
3 Map Showing Recreation Sites

The appendices present inventories of recreational use, location, size and water needs for 1,209 recreation sites and lists them by county and hydrographic region.

CONTENTS

Appendix A
Recreational Water Use Survey
Appendix B
Recreation Sites by County and Hydrographic Region, Location, Size and Major Activities
Appendix C
Recreation Sites by County, Hydrographic Region and Water Use
Appendix D
Recreation Sites by County, Hydrographic Region, and Resident and Nonresident Use
Appendix E
Recreation Use and Data Projections by County and Hydrographic Regions

-46-
Appendix F
Total Acres and Consumptive Use of Water for Outdoor Recreation by County and Hydrographic Region

Appendix G
Most Frequent Recreational Activities by Type of Site, County and Hydrographic Region

Estimates of Production by commodity and associated water and related land resources requirements are provided for the counties and hydrographic regions. Commodities listed include crops, forestry products, livestock populations and feed requirements.

CONTENTS

SECTION I
INTRODUCTION
Objectives
Agriculture in Nevada
 History
 Climate
 Irrigated Acreage and Farm Income
 Number, Size and Total Acreage in Farms and Ranches
 Nevada Population
 Agricultural Employment

SECTION II
LAND AND WATER USE AND AVAILABILITY
Current Agricultural Use
Land Ownership and Use
Prices Received by Farmers
Methodology
 Data Collection
 Projection Methodology
Hydrographic Region
Hydrographic Basin Crop and Livestock Estimates

SECTION III
LIVESTOCK PROJECTIONS FOR NEVADA
Beef Cattle Projections
Dairy Cattle and Milk Production Projections
Sheep and Wool Production Projections
Horse Projections
Swine Projections

SECTION IV

CROP PROJECTIONS FOR NEVADA
Hay Projections
Alfalfa Hay Projections
Other Hay Projections
Wild Hay Projections
Alfalfa Seed Projections
Wheat Production Projections
Barley Production Projections
Oat Production Projections
Corn Silage Production Projections
Cotton Projections
Potato Production Projections
All Other Crops Productions
Irrigated Pasture Projections

SECTION V

LIVESTOCK AND CROP PROJECTIONS BY COUNTY AND HYDROGRAPHIC REGION
Livestock Projections
 Beef Cattle Projections
 Dairy Cattle and Milk Production Projections
 Sheep and Wool Projections
 Horse Projections
 Swine Projections
Crop Projections
 Alfalfa Hay Projections
 Other Hay Projections
 Wild Hay Projections
 Alfalfa Seed Projections
 Wheat Projections
 Barley Projections
 Oats Projections
 Corn Silage Projections
 Cotton Projections
 Potatoes Projections
 Other Crops Productions
 Irrigated Pasture Projections

SECTION VI

CONSUMPTIVE WATER REQUIREMENTS BY COUNTY, HYDROGRAPHIC REGION AND STATE TOTALS
SECTION VII
LIVESTOCK GRAZING AND FOREST PRODUCTION
Livestock Grazing
 Bureau of Land Management
 U.S. Forest Service
 Private Grazing Lands
 Grazing Water Requirements
Forestry Production
 Bureau of Land Management
 U.S. Forest Service
 State Division of Forestry

SECTION VIII
FEED REQUIREMENTS FOR NEVADA LIVESTOCK

SECTION IX
RESTRICTED PROJECTIONS
Land
Water
Effect of Nonmobility
Revised Projections

Appendix A
 Summary of Water Requirements by County and Hydrographic Region for Each Category of Livestock and Crops, 1969
Appendix B
 Irrigable Land by Hydrographic Area for Nevada
Appendix C
 Formulas for Derivation of Crop Acreage and Yield Per Acre
Selected Bibliography

LIST OF TABLES

TABLE
 1 Irrigated Acreage in Nevada by Crop and County, 1969
 2 Cash Receipts by Commodities and Commodity Groups, Nevada, 1968-1970
 3 Farm Income, Nevada, 1968-1970
 4 Realized Gross Income and Net Income from Farming, Nevada, 1950-1970
 5 Number of Farms and Ranches and Associated Lands, Nevada and United States, 1960-1971
 6 County Population Growth Patterns, Nevada, 1920-2020
 7 Hydrographic Region Population Growth, Nevada, 1970-2020
 8 Urban and Rural Population Growth Patterns, Nevada, 1920-2020
 9 Total Employment and Agricultural, Forestry and Fisheries Employment, by County, Nevada, 1970
Estimated 1969 Irrigation Withdrawals by Hydrographic Regions and Counties, Nevada

1969 Irrigated Acreage by County and by Hydrographic Region, 1969

Irrigation Acreage Matrix by Counties as Percent of Hydrographic Basins and Total Acreages by Counties and Hydrographic Regions, 1969

Federally Owned Land in Nevada by Agency, 1970

1969 Prices Received by Farmers, Deflated to 1967 Base

Beef Cattle on Farms on January 1, Nevada, 1950-1970

Dairy Cattle on Farms, 1950-1970

Sheep on Farms on January 1, Nevada, 1950-1972

Population, Horses and Persons Per Horse, by County, Nevada

Sows Farrowed, Pig Crop and Pigs Per Sow Year, Nevada, 1960-1971

Acres of Alfalfa, Wild and Other Hay Harvested, Tons Per Acre and Total Production, Nevada, 1950-1971

Nevada Alfalfa Seed Production - 1959 to 1971

Nevada Wheat Production - 1950 to 1971

Nevada Barley Production - 1950 to 1971

Nevada Oat Production - 1950 to 1971

Nevada Corn Silage Production - 1950 to 1971

Nevada Cotton Production - 1950 to 1971

Nevada Potato Production - 1950 to 1968

Other Crops: Acres by Crop and County

Irrigated Pasture Acreage, by County

Beef Cows: Two Years of Age and Older, by County, Average 1966-1970 and Projections to 1980, 2000 and 2020

Beef Cows: Two Years of Age and Older, by Hydrographic Regions, Average 1966-1970 and Projections to 1980, 2000, and 2020

Beef Heifers: Kept as Herd Replacements, by County, Average 1966-1970 and Projections to 1980, 2000, and 2020

Beef Heifers: Kept as Herd Replacements, by Hydrographic Region, Average 1966-1970 and Projections to 1980, 2000, and 2020

Beef Feeders: Number of Calves at 400 Pounds that could be sold as Feeders, by County, Average 1966-1970 and Projections to 1980, 2000, and 2020

Beef Feeders: Number of Calves at 400 Pounds that could be sold as Feeders, by Hydrographic Region, Average 1966-1970 and Projections to 1980, 2000, and 2020

Beef Culls: Cows and Bulls Culled, by Hydrographic Region, Average 1966-1970 and Projections to 1980, 2000, and 2020
Dairy Cows: Two Years of Age and Older, by County, Average 1966-1970 and Projections to 1980, 2000, and 2020

Dairy Cows: Two Years of Age and Older, by Hydrographic Region, Average 1966-1970 and Projections to 1980, 2000, and 2020

Dairy Heifers: Kept as Herd Replacements, by County, Average 1966-1970 and Projections to 1980, 2000, and 2020

Dairy Heifers: Kept as Herd Replacements, by Hydrographic Region, Average 1966-1970 and Projections to 1980, 2000, and 2020

Dairy Feeders: Number of Calves at 400 Pounds that could be sold as Feeders, by County, Average 1966-1970 and Projections to 1980, 2000, and 2020

Dairy Feeders: Number of Calves at 400 Pounds that could be sold as Feeders, by Hydrographic Region, Average 1966-1970 and Projections to 1980, 2000, and 2020

Dairy Culls: Cows and Bulls Culled, by County, Average 1966-1970 and Projections to 1980, 2000, and 2020

Milk Production: Pounds Per Year, by County, Average 1966-1970 and Projections to 1980, 2000, and 2020

Milk Production: Pounds Per Year, by Hydrographic Region, Average 1966-1970 and Projections to 1980, 2000, and 2020

Sheep Ewes: One Year of Age and Older, by County, Average 1967-1971 and Projections to 1980, 2000, and 2020

Sheep Ewes: One Year of Age and Older, by Hydrographic Region, Average 1967-1971 and Projections to 1980, 2000, and 2020

Sheep Ewe Lamb: Kept as Herd Replacements, by County, Average 1967-1971 and Projections to 1980, 2000, and 2020

Sheep Ewe Lambs: Kept as Herd Replacements, by Hydrographic Region, Average 1967-1971 and Projections to 1980, 2000, and 2020

Sheep Lambs: Number of Lambs at 90 Pounds that could be sold, by County, Average 1967-1971 and Projections to 1980, 2000, and 2020

Sheep Lambs: Number of Lambs at 90 Pounds that could be sold, by Hydrographic Region, Average 1967-1971 and Projections to 1980, 2000, and 2020

56 Wool Production: Pounds Per Year, by County, Average 1967-1971 and Projections to 1980, 2000, and 2020

57 Wool Production: Pounds Per Year, by Hydrographic Region, Average 1967-1971 and Projections to 1980, 2000, and 2020

58 Horses: Estimated Number of Pleasure Horses, by County, for 1971 and Projections to 1980, 2000, and 2020

59 Swine: Sows Able to Farrow, by County, for 1969 and Projections to 1980, 2000, and 2020

60 Swine: Feeder Pigs, by County, for 1969 and Projections to 1980, 2000, and 2020

61 Alfalfa Hay: Acres Per County for 1969 and Projections to 1980, 2000, and 2020

62 Alfalfa Hay: Acres Per Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020

63 Alfalfa Hay: Tons Per Acre, by County, for 1969 and Projections to 1980, 2000, and 2020

64 Alfalfa Hay: Tons Per Acre, by Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020

65 Alfalfa Hay: Tons Per County, for 1969 and Projections to 1980, 2000, and 2020

66 Alfalfa Hay: Tons Per Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020

67 Other Hay: Acres Per County, for 1969 and Projections to 1980, 2000, and 2020

68 Other Hay: Acres Per Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020

69 Other Hay: Tons Per Acre, by County, for 1969 and Projections to 1980, 2000, and 2020

70 Other Hay: Tons Per Acre, by Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020

71 Other Hay: Tons Per County, for 1969 and Projections to 1980, 2000, and 2020

72 Other Hay: Tons Per Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020

73 Wild Hay: Acres Per County, for 1969 and Projections to 1980, 2000, and 2020

74 Wild Hay: Acres Per Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020

75 Wild Hay: Tons Per Acre, by County, for 1969 and Projections to 1980, 2000, and 2020

76 Wild Hay: Tons Per Acre, by Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020

77 Wild Hay: Tons Per County, for 1969 and Projections to 1980, 2000, and 2020

-52-
Wild Hay: Tons Per Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020
Alfalfa Seed: Acres Per County, for 1969 and Projections to 1980, 2000, and 2020
Alfalfa Seed: Acres Per Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020
Alfalfa Seed: Pounds Per Acre, by County, for 1969 and Projections to 1980, 2000, and 2020
Alfalfa Seed: Pounds Per Acre, by Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020
Alfalfa Seed: Pounds Per County, for 1969 and Projections to 1980, 2000, and 2020
Alfalfa Seed: Pounds Per Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020
Wheat Production: Acres Per County, for 1969 and Projections to 1980, 2000, and 2020
Wheat Production: Acres Per Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020
Wheat Production: Bushels Per Acre, by County, for 1969 and Projections to 1980, 2000, and 2020
Wheat Production: Bushels Per Acre, by Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020
Wheat Production: Bushels Per County, for 1969 and Projections to 1980, 2000, and 2020
Barley Production: Acres Per County, for 1969 and Projections to 1980, 2000, and 2020
Barley Production: Acres Per Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020
Barley Production: Bushels Per Acre, by County, for 1969 and Projections to 1980, 2000, and 2020
Barley Production: Bushels Per Acre, by Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020
Barley Production: Bushels Per County, for 1969 and Projections to 1980, 2000, and 2020
Oat Production: Acres Per County, for 1969 and Projections to 1980, 2000, and 2020
Oat Production: Acres Per Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020
Oat Production: Bushels Per Acre, by County, for 1969 and Projections to 1980, 2000, and 2020
Oat Production: Bushels Per Acre, by Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020
101 Oat Production: Bushels Per County, for 1969 and Projections to 1980, 2000, and 2020
102 Oat Production: Bushels Per Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020
103 Corn Silage: Acres Per County, for 1969 and Projections to 1980, 2000, and 2020
104 Corn Silage: Acres Per Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020
105 Corn Silage: Tons Per Acre, by County, for 1969 and Projections to 1980, 2000, and 2020
106 Corn Silage: Tons Per Acre, by Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020
107 Corn Silage: Tons Per County, 1969 and Projections to 1980, 2000, and 2020
108 Corn Silage: Tons Per Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020
109 Cotton: Acres Per County, Yield Per Acre and Pounds Per County, for 1969 and Projections to 1980, 2000, and 2020
110 Cotton: Acres Per Hydrographic Region, Yield Per Acre and Pounds Per County, for 1969 and Projections to 1980, 2000, and 2020
111 Potatoes: Acres Per County, for 1969 and Projections to 1980, 2000, and 2020
112 Potatoes: Acres Per Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020
113 Potatoes: Hundred Weight Per Acre, by County, for 1969 and Projections to 1980, 2000, and 2020
114 Potatoes: Hundred Weight Per Acre by Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020
115 Potatoes: Hundred Weight Per County, for 1969 and Projections to 1980, 2000, and 2020
116 Potatoes: Hundred Weight Per Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020
117 Other Crops: Acres Per County, for 1969 and Projections to 1980, 2000, and 2020
118 Other Crops: Acres Per Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020
119 Irrigated Pasture: Acres Per County, for 1969 and Projected to 1980, 2000, and 2020
120 Irrigated Pasture: Acres Per Hydrographic Region, for 1969 and Projections to 1980, 2000, and 2020
121 Livestock Water Consumption Requirements
122 Estimated Per Acre Crop Water Consumption Figures, by County and Crop, Nevada
123 Nevada Beef Water Consumption in Acre-Feet by County and Hydrographic Region, Average 1966-1970 and Projected to 1980, 2000, and 2020
124 Nevada Dairy Cattle Water Consumption in Acre-Feet by County and Hydrographic Region, Average 1966-1970 and Projected to 1980, 2000 and 2020
125 Nevada Sheep Water Consumption Estimated in Acre-Feet by County and Hydrographic Region, Average 1967-1971 and Projected to 1980, 2000, and 2020
126 Nevada Horse Water Consumption Estimated in Acre-Feet by County and Hydrographic Region, 1971 and Projected to 1980, 2000 and 2020
127 Nevada Swine Water Consumption in Acre-Feet by County and Hydrographic Regions, Average 1966-1970 and Projected to 1980, 2000, and 2020
128 Alfalfa Hay: Estimated Water Consumption in Acre-Feet by County and Hydrographic Region, 1969 and Projected to 1980, 2000, and 2020
129 Other Hay: Estimated Water Consumption in Acre-Feet by County and Hydrographic Region, 1969 and Projected to 1980, 2000, and 2020
130 Wild Hay: Estimated Water Consumption in Acre-Feet by County and Hydrographic Region, 1969 and Projected to 1980, 2000, and 2020
131 Alfalfa Seed: Estimated Water Consumption in Acre-Feet by County and Hydrographic Region, 1969 and Projected to 1980, 2000, and 2020
132 Wheat Production: Estimated Water Consumption in Acre-Feet by County and Hydrographic Region, 1969 and Projected to 1980, 2000, and 2020
133 Barley Production: Estimated Water Consumption in Acre-Feet by County and Hydrographic Region, 1969 and Projected to 1980, 2000, and 2020
134 Oat Production: Estimated Water Consumption in Acre-Feet by County and Hydrographic Region, 1969 and Projected to 1980, 2000, and 2020
135 Corn Silage: Estimated Water Consumption in Acre-Feet by County and Hydrographic Region, 1969 and Projected to 1980, 2000, and 2020
136 Cotton: Estimated Water Consumption in Acre-Feet by County and Hydrographic Region, 1969 and Projected to 1980, 2000, and 2020
137 Potatoes: Estimated Water Consumption in Acre-Feet by County and Hydrographic Region, 1969 and Projected to 1980, 2000, and 2020
138 Other Crops: Estimated Water Consumption in Acre-Feet by County and Hydrographic Region, 1969 and Projected to 1980, 2000, and 2020
139 Irrigated Pasture: Estimated Water Consumption in Acre-Feet by County and Hydrographic Region, 1969 and Projected to 1980, 2000, and 2020
140 Public Lands Managed by BLM, by County
Permitted Use of Bureau of Land Management Grazing District and Taylor Grazing Act Lease Lands, Nevada 1959-1970
Livestock Grazing on Lands Administered by the BLM, by Counties, Nevada 1970
Livestock Grazing on Lands Administered by the BLM, by Hydrographic Regions, Nevada 1970
Livestock Grazing on National Forest Lands, Toiyabe and Humboldt National Forest, Nevada 1969-1971
Livestock Grazing on Lands Administered by the U.S. Forest Service, by County and Hydrographic Region, Nevada, 1970
Estimated Acres of Private Grazing Land, by County, and Estimated Production in AUM's, 1969
Timber Sales and Free Use Timber and Nontimber Forest Products Permits Issued by the Bureau of Land Management, Nevada, 1960-1971
Commercial Timber Sales, by County, Nevada, 1970
Forest Productions from BLM Lands, Free Harvested and Sales, Nevada, Fiscal 1971
Forest Products from U.S. Forest Service Lands, Nevada, Fiscal Years 1969-1971
Estimated Total Digestible Nutrients Supplied by Crops for 1969 and Projections to 1980, 2000, and 2020
Estimated Total Digestible Nutrients Requirements for Nevada Livestock for the Base Period and Projected to 1980, 2000, and 2020
Total Production of Animal Unit Months of Livestock Feed from Irrigated Pasture, 1969 and Projected to 1980, 2000, and 2020
Total and Private Irrigable Land, by County, and Additional Land Available for 1969 and Projected Years 1980, 2000, and 2020
Total and Private Irrigable Land, by Hydrographic Region and Additional Land Available for 1969, and Projected Years 1980, 2000, and 2020
1969 Total Ground Water, Ground Water Pumped, Over-Pumpage and Surplus by County and Hydrographic Region
Irrigation Water Requirements and Surpluses and Deficits, by County, Projected to the Years 1980, 2000, and 2020
Irrigation Water Requirements and Surpluses and Deficits, by Hydrographic Region, Projected to the Years 1980, 2000, and 2020

Reductions in Acres of Irrigated Pasture, Wild Hay, or Other Hay Required to Offset Water Deficiencies by County and Hydrographic Region, 1980, 2000, and 2020

Revised Projected Land and Water Use for Hay and Pasture, Including Estimated Water Surpluses and Unused Irrigable Lands, by Counties, 1980

Revised Projected Land and Water Use for Hay and Pasture, Including Estimated Water Surpluses and Unused Irrigable Lands, by Counties, 2000

Revised Projected Land and Water Use for Hay and Pasture, Including Estimated Water Surpluses and Unused Irrigable Lands, by Counties, 2020

Revised Projected Land and Water Use for Hay and Pasture, Including Estimated Water Surpluses and Unused Irrigable Lands, by Hydrographic Region, 1980

Revised Projected Land and Water Use for Hay and Pasture, Including Estimated Water Surpluses and Unused Irrigable Lands, by Hydrographic Region, 2000

Revised Projected Land and Water Use for Hay and Pasture, Including Estimated Water Surpluses and Unused Irrigable Lands, by Hydrographic Region, 2020

LIST OF FIGURES

FIGURE
1 Nevada Basic Beef Herd Projected to the Year 2020
2 Nevada Dairy Cow Numbers Projected to the Year 2020
3 Pounds of Milk Per Cow Projected to the Year 2020
4 Nevada Milk Production Projected to the Year 2020
5 Ewes, Rams, and Ewe Replacements Projected to the Year 2020
6 Nevada Horse Projections to the Year 2020
7 Nevada Hay Alfalfa Acreage Projected to the Year 2020
8 Nevada Alfalfa Yield Per Acre Projected to the Year 2020
9 Nevada Other Hay Acreage Projected to the Year 2020
10 Nevada Other Hay Yield Projections to the Year 2020
11 Nevada Wild Hay Acreage Projected to the Year 2020
12 Nevada Wild Hay Yield Projections to the Year 2020
13 Nevada Alfalfa Seed Acreage Projections to the Year 2020
14 Nevada Alfalfa Seed Yield Per Acre Projected to the Year 2020
15 Nevada Winter Wheat Acreage Projections to the Year 2020
16 Nevada Spring Wheat Acreage Projections to the Year 2020
17 Nevada Wheat Yield Per Acre Projected to the Year 2020
18 Nevada Spring Wheat Yields Per Acre Projected to the Year 2020
19 Nevada Total Wheat Acreage Projections to the Year 2020
20 Nevada Barley Acreage Projected to the Year 2020
21 Nevada Barley Yields Per Acre Projected to the Year 2020
22 Nevada Oat Acreage Projected to the Year 2020
23 Nevada Oat Yield Per Acre Projected to the Year 2020
24 Nevada Corn Silage Acres Projected to the Year 2020
25 Nevada Corn Silage Yield Per Acre Projected to the Year 2020
26 Cotton Acreage Projected to the Year 2020
27 Cotton Yield Per Acre Projected to the Year 2020
28 Nevada Potato Acreage Projected to the Year 2020
29 Nevada Potato Yield Per Acre Projected to the Year 2020
30 Nevada "Other" Crop Acreage Projected to the Year 2020
31 Nevada Irrigated Pasture Acreage Projected to the Year 2020

LIST OF MAPS

Map 1 Map of Nevada Showing Hydrographic Regions and Counties

The soils of the Dixie Valley area are identified, mapped, and named according to the Soil Taxonomy of the National Cooperative Soil Survey. For additional description, refer to the previous review of the special report of May 1971 entitled, "Reconnaissance Soil Survey of Railroad Valley."

CONTENTS

Summary
Introduction
Environmental Features
Location and Cultural Features
Landforms and Geology
General Geology Map
Climate
Precipitation Map
Mean Growing Season Length Map
Vegetation
Water Resources
Crop Adaptability
Soils
Soil Taxonomy
Soils of the Area
General Soil Map
Poorly Drained Soils of Wet Playas and Basin-fill Plains
Somewhat Poorly Drained Soils of Basin-fill Plains and Playas
Well Drained Soils of Basin-fill Plains and Stream Floodplains
Soils of Smooth Alluvial Fans
Soils of Dissected Alluvial Fans
Soils of Moderately Steep Hills and Mountains
Soils of Steep and Very Steep Mountains
Descriptions of Map Units of the Reconnaissance Soil Map
Soil Map Unit Symbols and Acreage
Constituent Soils and Their Proportions
Physiographic Position
Typical Vegetation
Soil Drainage
Surface Soil Texture and Thickness
Subsoil Texture and Thickness
Substratum Texture
Depth to Bedrock or Hardpan
Depth to Gravel
Coarse Fragments
Soil Reaction (pH)
Soil Interpretations for Land Use Planning and Management
Available Waterholding Capacity
Profile Permeability
Shrink-Swell Potential
Frost Action Potential
Engineering Soil Classes
Erosion Hazard
Suitability for Sand and Gravel
Suitability for Road Fill
Limitations for Septic Tank Absorption Fields
Limitations for Sanitary Landfills
Limitations for Dwellings
Limitations for Roads and Streets
Soil Hydrologic Group
Land Capability Class
Soil Irrigability Class

Footnotes
References
Appendices
Tables
Reconnaissance Soil Map
Irrigable Soils Map

LIST OF APPENDICES

APPENDIX
1 Temperature and Precipitation at East Gate, Nevada
2 Meanings of the Formative Elements used in the
 Taxonomic Soil Names
3 Criteria for Soil Phases
4 Descriptions of Irrigability Classes and Subclasses

LIST OF TABLES

TABLE
1 Kinds of Soils in Map Units and Their Properties
2 Soil Interpretations
3 Acreages of Irrigable and Nonirrigable Soils
4 Kinds of Soils Mapped in the Dixie Valley Area
5 Chemical Analysis of Water Samples from Dixie Valley

Basic planning for Nevada's future water and
related land resources options, as related to
electric energy, is provided from two viewpoints -
Nevada's and that of the eleven Western States
along with the nation.
Numerical electric energy projections are
provided, for Nevada, California, the eleven
Western States and the nation, along with
future water requirements for Nevada's electric
energy needs.

CONTENTS

CHAPTER 1
INTRODUCTION

Major Issues
 Effects Upon Nevada
 Nevada's Present Internal Position
 External Factors
 Alternative Postures

CHAPTER 2

PURPOSES OF THIS REPORT
 Overview
 Purposes

CHAPTER 3

AMOUNT OF ELECTRIC ENERGY GENERATION AND USE
 Future Meaning
 Powerful Forces Interacting
 Listing of Projections
 Most Probable Basis
 Growth Patterns Inside Nevada
 Study Boundaries
 Nevada Projection Approach
 Past and Expected Patterns
 Population - Water - Energy Situation
 Number of Nevada Generating Stations
 Growth Patterns Outside Nevada
 Interpretation of Outside Pressures
 Study Boundaries
 Regional Projection Approach
 Past and Expected Patterns
 Prudence of Self Sufficiency

CHAPTER 4

CONSERVATION FOR ELECTRIC ENERGY GENERATION AND USE
 Limitations
 Efficiency
 Factors of Efficiency

LIST OF TABLES

TABLE
 1 Projections in this Report
 2 Nevada Electric Energy Use Growth Patterns, Historic and Projected, in the Period 1930-2020
 3 Nevada Growth Patterns for Population, Per Capita Use and Total Use of Electric Energy
 4 Coolant Water Needs for Nevada's Future Electric Energy Generation
Population and Electric Energy Growth Patterns for Groupings of States by Area and Class, 1920-2020
Important Inflection Times for Long Term Growth

LIST OF FIGURES

FIGURE
1 Nevada Electric Energy Growth Patterns by Area
2 Nevada Electric Energy Growth Patterns by Class of Usage
3 Nevada Per Capita Electric Energy Growth Patterns
4 Coolant Water Needs for Nevada’s Future Electric Energy Generation, Assuming No Net Import or Export of Electric Energy
5 Percent Increase in Importance above 1970 Conditions with Time
6 Population Growth Patterns for the Nation and Groupings of States by Area and Class, 1920-2020
7 Electric Energy Generation Growth Patterns for the Nation and Groupings of States by Area and Class, 1920-2020
8 Per Capita Electric Energy Generation Growth Patterns for the Nation and Groupings of States by Area and Class, 1920-2020

LIST OF MAPS

MAP
1A Nevada and A Portion of the West, as Viewed from the Pacific Ocean
1B Principal Electric Energy Transmission Lines of Nevada and A Portion of the West
2 Nevada Portions of FPC Power Market Areas I, II, III and IV
3 Nevada Portions of FPC Power Supply Areas 41, 46B, 47 and 48
4 United States of America, the 48 Contiguous States in 4 Regions

-62-
These appendices describe a tentatively developed rating system, with economic and environmental considerations, for selecting valleys which might efficiently support electric energy generation.

CONTENTS

Focus Upon Efficiency

Appendix A, Siting
Appendix B, Alternative Processes
Appendix C, Rate of Use
Appendix D, Design
Appendix E, Natural Limits
Appendix F, Regulatory Situation
Appendix G, Technology of Water Use for Energy Processes

Bibliography

TABLES

TABLE
6 Population and Electric Energy Growth Patterns for Groupings of States by Area and Class, 1920-2020
8 Listing of Valleys Tentatively Selected
9 Large Historic Earthquakes in the Western Basin and Range Province, Nevada and California
10 Vegetation General Categories Showing Estimated Amounts
11 Known and Listed Archeological Resources Per the Nevada Archeological Survey (NAS), 1974
12 Nevada Archeological Survey Basins Corresponding to Division of Water Resources Hydrographic Areas, 1974
13 Proposed Buffer Zone for Plant Siting
14 Less Favorable Areas for Plant Siting
15 Known Geothermal Resource Areas (KGRA) in Nevada
16 Exploratory Geothermal Drilling in Nevada Through 1973
17 Estimated Future Geothermal Energy Statistics by County
18 Estimated Future Geothermal Energy Statistics by Hydrographic Region
19 Geothermal Resource Development on Federal Lands
20 Nevada Potential Pumped Storage Sites
21 Site Selection Criteria Summary
22 Number of People at Hard Manual Labor Equivalent to Electric Energy to Operate Devices and Processes
23 Sources of Residential Average Annual Use
24 Organization of Appendix to Show Meaning
25 Description and Measurement of Focus
26 Variables and Combinations as an Identity
27 Meanings of Combinations of Variables in the Identity
28 Relationships Among Densities
29 What It Means to Try to "Control the Whole Thing"
30 Major Regulatory Factors and Their Major Effects on the
 Major Sources of Energy
31 Regulatory and Advisory Agencies and Functions with
 Respect to Energy

FIGURES

FIGURE
6 Population Growth Patterns for the Nation and Groupings
 of States by Area and Class, 1920-2020
7 Electric Energy Generation Growth Patterns for the
 Nation and Groupings of States by Area and Class, 1920-2020
8 Per Capita Electric Energy Generation Growth Patterns
 for the Nation and Groupings of States by Area and
 Class, 1920-2020
9 Stages of Siting Process
10 Economic-Environmental Balance Mechanism for Siting-
 Rating System
11 Earthquakes in Nevada for 1971
12 Provisional Fault Map of Nevada
13 Faults in the Reno-Tahoe-Carson City Area
14 Proposed Buffer Zone
15 Pumped Storage Plant Operation
16 Typical Weekly Electric Utility System Load Curve
17 Head-Storage Capacity Relationship
18 Typical Cross Section of an Earthfill Dam

MAPS

MAP
5 Nevada Archeological Survey Basins and Resources
6 Known Geothermal Resource Areas (KGRA) and Lease Appli-
 cations Activity in Nevada
7 Hot Springs and Geothermal Wells in Nevada
8 Nevada Potential Pumped Storage Sites

State Engineer's Office, Nevada Division of Water Resources,
Department of Conservation and Natural Resources, September
1974.

Input-output analysis, an economic modeling
technique, has been provisionally developed for
Nevada. The technique may be used to examine
Nevada's future alternatives involving the use
of water and related land resources.
Foreseeable major problems are candidates for possible input-output analysis. To demonstrate the capabilities and limitations of the input-output technique, maintaining the level of Walker Lake was examined in terms of reduction in upstream water use and estimating associated reductions in production, employment and income.

CONTENTS

PART I
FOREWORD BY DIVISION OF WATER RESOURCES

PART II
INTRODUCTION

PART III
DESCRIPTION OF INPUT-OUTPUT ANALYSIS

Interindustry Structure
Transaction or Flow Matrix
Assumptions Underlying Interindustry Models
Direct Coefficients
Direct and Indirect Coefficients
Interindustry Multipliers
 Output Multipliers
 Income or Value Added Multipliers
 Employment Multipliers
 Water Multipliers

PART IV
THE NEVADA INTERINDUSTRY MODEL

Procedure: Construction of Nevada State Interindustry Model
 Defining of Sectors
 Estimation of Sector Outputs
 Estimation of Final Demands
 Determination of Interindustry Flows
 Reduction of Forty Sectors
Procedure: Construction of Substate Models
Nevada Interindustry Models

PART V
APPLICATION OF THE MODEL
PART VI

CONCLUSIONS

Appendix A
Mathematical Description of the Interindustry Model
Calculation of Output Multipliers
Calculation of Income Multipliers
Calculation of Employment Multipliers
Calculation of Water Multipliers

Appendix B
Mathematical Statement of Procedure Followed in Walker
River Basin Application

Appendix C
A Multi-Sector Analysis of Use, Employment and Income in
the State of Nevada
Report of Lawrence Berkeley Laboratory to the Division
of Water Resources

Appendix D
Questionnaire Used by the Division of Water Resources to
Ascertain Basic Industry Data

References

LIST OF TABLES

TABLE
1 Producing - Purchasing Sectors, Final Use Sectors, and
Primary Inputs Sectors
2 Transaction or Flow Matrix for 3-Sector Example
3 Transaction or Flow Matrix for a Portion of the Nevada
State Model
4 Direct Coefficients for 3-Sector Example
5 Summary of 3 Rounds of Transactions, 3-Sector Example
6 Direct and Indirect Coefficients for 3-Sector Example
7 Direct Income (Value Added) Employment, and Water Coef-
ficients and Multipliers for Output, Income (Value
Added), Employment, and Water for 3-Sector Example
8 Direct Value Added, Employment and Water Coefficients and
Multipliers for Output, Value Added, Employment and
Water - Nevada State Model
9 Direct Value Added, Employment and Water Coefficients and
Multipliers for Output, Value Added, Employment and
Water - Humboldt Regional Model
10 Direct Value Added, Employment, and Water Coefficients
and Multipliers for Output, Value Added, Employment and
Water - Central Lahontan Regional Model
11 Direct value Added, Employment and Water Coefficients and Multipliers for Output, Value Added, Employment, and Water - Tonopah Desert Regional Model
12 Direct value Added, Employment, and Water Coefficients and Multipliers for Output, Value Added, Employment, and Water - Southern Nevada Regional Model
13 Alternative Allocations of 60,000 Acre-Feet in upstream Depletion among Sectors
14 Impact of Reducing Depletions along the Walker River by 60,000 Acre-Feet on Output, Value Added, and Employment

LIST OF FIGURES

Figure 1 Schematic Diagram of Typical Flow or Transaction Matrix
Figure 2 Nevada Interregional Input-output Models

Nevada's system of established surface and ground water rights has been evolving for more than 100 years. During this time, beneficial use has been defined by court decision and statute as the basis, measure and limit of the right to use water. History of water policy and administration, as well as amendments to the water law, are traced to the present.

CONTENTS

PART I

SUMMARY

History
Case Law
Appropriation of Public Waters
Beneficial Use
Eminent Domain
Prescriptive Rights Prohibited
State Water Right surveyors
Assignment of Water Rights
Loss of Water Rights
Appeals
Ground Water
Licensed Well Drillers
Domestic Wells Excepted
Dams and Other Obstructions
Ditches and Canals
Navigable Bodies of Water
Interbasin Transfers
Area of Origin

PART II

WATER RIGHT PROCEDURES AND POLICIES IN NEVADA
Adjudication Procedures
 Summary of Adjudication Procedure on Vested Rights
Permit to Appropriate
 The Application
 The Permit
General Terms on Permit
 Prior Rights
 Measuring Devices
 Flowing Wells
 Wells Drilled Near Rivers
 Amount of Diversion and Yearly Use
 Proofs
 Proof of Commencement
 Proof of Completion
 Proof of Beneficial Use
 Extension of Time
 Protests
 Appeals
 Application to Change
 Assignability of Water Rights

Dams
Well Drillers and Wells
Rotation
Reciprocal Agreements
Appropriation of Effluent

PART III

FUNCTIONS AND ADMINISTRATION
 Functions
 Water Distribution
 Surface Water
 Ground Water
 Adjudication
 Types of Decrees
 State Water Plan
Administration
 Irrigation Districts
Drainage Districts
Water Conservancy Districts
Watershed Protection and Flood Prevention Districts
Flood Control Districts
Weather Modification Research
Advisory Boards
Appendix A
Key Court Decisions and Attorney General's Opinions on Water
Appendix B
Designated Ground Water Basins
Appendix C
Status of Adjudication Proceedings in Nevada
Appendix D
Sample Forms

Water for Nevada, Special Report, Nevada State Water Plan
References, State Engineer's Office, Division of Water Resources,
Department of Conservation and Natural Resources, June 1976.

This report contains all the references that were utilized in the development of the Nevada State Water Plan. There are about 1,000 references which include interviews, press releases, short excerpts as well as reports, books and professional papers from federal, state, local governments, private individuals and consultants. Included in the report is a map which portrays those references which are limited to a specific geographical point of Nevada.

CONTENTS

Introduction
Nevada State Water Planning References by Hydrographic Areas
Nevada State Water Planning References by Alphabetical Listing of Hydrographic Areas
Nevada State Water Planning References by Specific Geographic Areas
Nevada State Water Planning References by Statewide Geographical Significance
Nevada State Water Planning References by National or International Geographical Significance

-69-
"ALTERNATIVE PLANS FOR WATER RESOURCE USE"

This water planning report, the first in a series of six, considers the range of possible alternative uses in which the water resources of the Walker Basin could be employed. The report basically outlines environmental quality and economic efficiency objectives for use of the available water in the basin. To analyze the impact of either of these objectives, a without plan was developed which would show the expected future trends of the basin's major activities without intentional deviations based upon objectives. The center of attention is directed toward the decline of Walker Lake by 60,000 acre-feet per year, flooding throughout the basin, irrigation requirements, and recreation needs.

There were two environmental alternatives offered. The first would be a plan directed toward the
maintenance of the lake at its present level, while the second emphasized development and use of water upstream without regard to the lake level. Both alternatives noted that fishing was the main recreational activity in the basin.

The economic efficiency alternative discussed possible reservoir sites for recreation, irrigation, flood protection and fishery enhancement. The plan outlines the projected needs with and without the large water requirements projected for the mining industry in the basin. Several possibilities to save Walker Lake were also studied in the economic efficiency plan.

CONTENTS

Perface

CHAPTER I

INTRODUCTION
 Purpose and Scope
 State Water Plan
 Westwide Study
 Acknowledgments

CHAPTER II

SETTING
 The Basin
 Climate
 Economy of the Basin
 Population, Employment, and Income
 Land Ownership and Use Patterns
 Water Resources
 Water Use
 Surface Water Rights
 Ground Water Rights

CHAPTER III

CRITERIA AND STANDARDS
 Water Resources
 Water Supply
 Water Quality
 Impacts
 Tangible Impacts
 Quasi-Tangible Impacts
 Intangible Impacts
CHAPTER IV

ALTERNATIVE PLANS

Without Plan

Walker Lake
Sport Fishery and Recreation
Walker Lake
Upstream Area
Agriculture
Flood Protection
Municipal and Industrial Water
Mining
Water Quality

Economic Efficiency Alternatives

Components for Economic Efficiency Alternatives

Ground Water Augmentation
Desalting
Phreatophyte Control
Bridgeport Project
Pumpkin Hollow Project
Strosnider Reservoir
West Walker Project
Pickel Meadows Reservoir
Hudson Reservoir
Mining

Alternative I

Alternative II

Environmental Quality Alternatives

Components for Environmental Quality Alternatives

Informing the Public
Establishing Scenic Vistas and Natural or Wilderness-type Areas
Improving Streams
Zoning Flood Plains
Promoting Watershed Management Programs
Modernizing Existing Irrigation Facilities
Designating and Establishing Recreation Sites
Modifying the Outlet of Topaz Lake and Improving Water Control at the Inlet
Enlarging Bridgeport Reservoir and Providing a Multiple-Level Outlet to Maintain a Larger Minimum Pool
Purchasing the Ivey Ranch on the East Walker Encouraging Regional Planning

Alternative III

Alternative IV

Appendix A
Appendix B
References
TABLES

1 Population, Employment, and Income - Walker River Basin, State of Nevada, and United States
2 Employment and Earnings - Walker River Basin, 1970
3 Land Ownership - Walker River Basin, 1967
4 Land Use Summary - Walker River Basin, 1967
5 Water Yield by Hydrologic Units - Walker River Basin
7 Irrigated Areas and Water Right Acreages - Walker River Basin
8 Acreage Actually Served by Walker River Irrigation District
9 Permitted Ground Water Use - Walker River Basin
10 Population Projections - Walker River Basin
11 Projected Municipal and Industrial Water Requirements - Walker River Basin
12 Estimated Annually Sediment Yield at Specific Locations - Walker River Basin
13 Evaluation of Bridgeport Project
14 Evaluation of Pumpkin Hollow Project
15 Evaluation of Strosnider Reservoir
16 Evaluation of West Walker Project
17 Evaluation of Pickel Meadows Reservoir
18 Evaluation of Hudson Reservoir
19 Projected Mining Activity - Walker River Basin
20 Summary Economic Evaluation of Economic Efficiency, Alternative I - Walker River Basin

FIGURES
1 Annual Streamflow Distribution
2 Flow Diagram - Walker River Basin

MAPS

Walker River Basin
Alternative I Facilities
Alternative II Facilities
Alternative III and IV Facilities

This report is centered around the competing water needs on the Truckee and Carson River systems.
Problems in this area are the declining of Pyramid Lake, floods, municipal, industrial, and agricultural water shortages, seasonal erratic flows of small streams, lack of adequate water for wildlife areas, and a need for more water-related recreation. Various schemes for water import, ground water augmentation, snow evaporation suppression, and land management are noted.

Without supplemental sources for existing supplies, the Carson City area is projected to run short of municipal and industrial water in this century. Possible actions for additional water for Carson City are considered. Actions to enhance the Newlands area are briefly mentioned which include lining ditches, eliminating holding ponds, and phreatophyte eradication. Should Pyramid Lake be maintained at its level, the report estimates various upstream impacts in dollars and man years of employment.

Two environmental quality plans were presented. The first maintained the level of Pyramid Lake. The second disregarded the lake level while allowing development to continue within environmental constraints upstream. The economic efficiency alternative identified eight projects with twenty-seven reservoirs for flood protection, irrigation storage, power generation, recreation, fishery, and municipal and industrial uses.

CONTENTS

Perface

CHAPTER I

INTRODUCTION
 Purpose and Scope
 State Water Plan
 Central Lahontan River Basin Study
 Westwide Study
 Acknowledgments

CHAPTER II

SETTING
 Climate
 Economy of the Basin
 Population, Employment and Income
 Land Ownership and Use Patterns
 Water Resources
 Water Use

-74-
Surface Water Rights
California-Nevada Interstate Compact
Water Service Districts
Ground Water Rights

CHAPTER III

CRITERIA AND STANDARDS
Water Resources
Water Supply
Water Quality
Impacts
Tangible Impacts
Quasi-Tangible Impacts
Intangible Impacts

CHAPTER IV

ALTERNATIVE PLANS
Without Plan
Pyramid Lake
Sport Fishery and Recreation
Agriculture
Flood Protection
Municipal and Industrial Water Supplies
Mining
Water Quality
Economic Efficiency Alternative
Alternative I
Watasheamu Project
Carson City Watershed
Fallon Area Irrigation Improvements
Incline Village Watershed
Block "N" Project
Southwest Reno Project
Galena Creek Watershed

Environmental Quality Alternatives
Components for Environmental Quality Alternatives
Informing the Public
Establishing Scenic Vistas and Natural or Wilderness-Type Areas
Improving Streams
Zoning Flood Plains
Promoting Watershed Management Programs
Modernizing Existing Irrigation Facilities
Designating and Establishing Recreation Sites
Encouraging Regional Planning

Alternative II
General
Carson River Basin
Truckee River Basin
Alternative III
General
Carson River Basin
Truckee River Basin

Appendix A
Water Quality Standards and Monitoring Data
Appendix B
Ground Water Augmentation for Pyramid Lake
Appendix C
Analysis of Irrigated Agriculture
Appendix C
Impacts and Alternatives Associated with Providing more
Water for Pyramid Lake
Appendix E
Carson City Water Supply Alternatives
Appendix F
Other Economic Efficiency Components
Appendix G
Environmental Quality Worksheets

References

TABLES

1 Population, Employment and Income, 1970
2 Employment and Earnings, Planning Area II, 1970
3 Land Ownership, Planning Area II, and California
 Portion of Carson and Truckee Basins
4 Summary of Land Use, Planning Area II, and the
 California Portions of the Carson and Truckee
 Basins
5 Water Yield by Hydrologic Units
6 Summary of Water Use, Area II, 1969
7 Population Projections, Area II
8 Projected Municipal and Industrial Water Requirements,
 Area II
9 Projected Mining Activity and Water Requirements for
 Mining, Area II
10 Estimated Annual Sediment Yield Reaching the Carson
 and Truckee Rivers, Planning Area II

FIGURES

1 Annual Streamflow Distribution
2 Flow Diagram

MAPS

 Carson-Truckee River Basins, Area II
Alternative Plans
This report analyzes the water resources situation for the Humboldt River Drainage, the Black Rock Desert area, and the Northwest Region of the State. The Humboldt River is the largest river which begins and terminates within the State. Problems in Area III are floods, irrigation seasonal flows, sediment (both wind and water) and short growing seasons. The report indicates that the elevations in this planning area range from over 10,000 feet to less than 4,000 feet. Government is the largest employer with services second. The 1970 per capita income was slightly over $5,000. Of the 18,300,000 acres in this planning area, over three-fourths are used as rangeland. There are no lakes in the planning area, and the stream flows are very erratic.

The environmental plan discussed many components to help preserve the rather untouched environment. These include more wilderness-type areas, and more scenic vistas. One environmental quality alternative stressed keeping streams free flowing without additional structures.

The economic efficiency plan stresses the three upstream storage project dams which provide flood protection, sediment detention, irrigation water storage, recreation, fish and wildlife, and channelization. Agricultural water management was identified for certain areas.

CONTENTS

Preface

CHAPTER I

INTRODUCTION
Purpose and Scope
State Water Plan
River Basin Survey for the Humboldt System
Corps of Engineers
Westwide Study
Acknowledgments

CHAPTER II

SETTING
Climate
Economy of the Basin
Population, Employment and Income
Land Ownership and Use Patterns
Water Resources
Water Use
Surface Water Rights
Ground Water Rights

CHAPTER III

CRITERIA AND STANDARDS
Water Resources
Water Supply
Water Quality
Impacts
Tangible Impacts
Quasi-Tangible Impacts
Intangible Impacts

CHAPTER IV

ALTERNATIVE PLANS
Without Plan
Sport Fishery and Recreation
Agriculture
Flood Protection
Municipal and Industrial Water
Mining
Water Quality
Economic Efficiency Alternative
Alternative I
Metropolis Reservoir
Vista Dam and Reservoir
Mary's River
Devils Gate Dam and Reservoir
Hylton Dam and Reservoir
Huntington Site
Reese River Valley System
Clear Creek
Water Canyon
Kittridge Creek
Rye Patch Dam and Reservoir

Environmental Quality Alternative
Components for Environmental Quality Alternatives
Informing the Public
Improving Streams, Lakes, Reservoirs and Springs
Zoning Flood Plains
Promoting Watershed Management Programs
Modernizing Existing Irrigation Facilities

-78-
Establishing Scenic Vistas and Natural or Wilderness-Type Areas
Designating and Establishing Recreation Sites
Alternative II
General
Black Rock Desert and Northwest Regions
Humboldt River Basin

Appendix A
Water Quality Standards and Monitoring Data
Appendix B
Analysis of Irrigated Agriculture
Appendix C
Other Economic Efficiency Components
Appendix D
Environmental Quality Worksheets
References

TABLES
1 Population, Employment and Income - 1970
2 Employment and Earnings, Planning Area III - 1970
3 Land Ownership, Planning Area III - 1970
4 Summary of Land Use, Planning Area III - 1970
5 Water Yields by Subdivisions
6 Summary of Water Use, Planning Area III - 1969
7 Population Projections, Planning Area III
8 Projected Municipal and Industrial Water Requirements, Planning Area III
9 Projected Mining Activity and Water Requirements for Mining, Planning Area III

FIGURES
1 Average Streamflow Distribution
2 Flow Diagram

MAPS
Area III
Alternative Plans

Area IV, the largest single study area in Nevada, is over 400 miles long and 300 miles wide at the extremes. Three alternatives are presented concerning use of the water supplies in Area IV. The environmental quality plan stresses the protection and preservation of the fragile desert environment by informing the public concerning environmental problems, and spreading development over a large area to minimize severe damage to certain areas. The economic efficiency alternative stresses flood protection reservoirs, especially for Ely, Duckwater, and Beatty. Also, several reservoirs would be constructed for recreation and fishery.

This is the only planning region with an identified "area development" plan. This plan is designed to upgrade depressed economies and alleviate the lack of services, such as doctors, dentists and hospitals. Some of the possibilities in the area development plan include mining and agriculture co-ops, warehousing, small assembly plants, increases in recreation, better transportation and services, hydroponics, and solar generation experimentation.

CONTENTS

Preface

CHAPTER I

INTRODUCTION
Purpose and Scope
State Water Plan
Westwide Study
Planning Areas

CHAPTER II

SETTING
Climate
Economy of the Area
Population, Employment, and Income
Land Ownership and Use Patterns
Water Resources
Water Use
 Surface Water Rights
 Ground Water Rights

CHAPTER III
CRITERIA AND STANDARDS

Water Resources
Water Supply
Water Quality

Impacts
Tangible Impacts
Quasi-Tangible Impacts
Intangible Impacts

CHAPTER IV

ALTERNATIVE PLANS

Without Plan
Sport Fishery and Recreation
Agriculture
Flood Protection
Municipal and Industrial Water Supplies
Mining
Water Quality
Power Generation Facilities

Economic Efficiency Alternative
Alternative I
Gleason Creek Project (Robinson Canyon)
Egan Creek
Buena Vista Creek
Beatty Wash
Thirsty Canyon
Wheeler Wash
Currant Creek
Lovell Canyon
Kingston Canyon Area

Environmental Quality Alternative
Components for Environmental Quality Alternative
Informing the Public
Improvements of Streams, Lakes, Reservoirs, Ponds, and Springs
Promoting Watershed Management Programs
Modernizing Existing Irrigation Facilities
Zoning Flood Plains
Establishing Scenic Vistas, Rest Areas, and Natural or Wilderness-Type Areas
Designating and Establishing Recreation Sites
Encouraging Regional Planning

Alternative II

Appendix A
Water Quality Standards

Appendix B
Analysis of Irrigated Agriculture

Appendix C
Other Economic Efficiency Components
Appendix D
 Environmental Quality Worksheets
Appendix E
 Area Development Plan
References

TABLES

1 Population, Employment, and Income, Area IV, 1970
2 Employment and Earnings, Area IV, 1970
3 Land Ownership, Area IV, 1970
4 Summary of Land Use, Area IV, 1970
5 Estimated Annual Streamflow of Selected Streams in Area IV
6 Summary of Water Use, Area IV, 1969
7 Population Projections, Area IV
8 Projected Municipal and Industrial Water Requirements, Area IV
9 Projected Mining Activity and Water Requirements for Mining, Area IV

FIGURES

1 Average Streamflow Distribution

MAPS

Area IV
Nevada's Hydrographic Regions and State Water Planning Areas
Alternative-Plan Facilities
Rare and Endangered Fauna

This report identifies major issues and alternatives in the most populated planning region in Nevada. Toward the end of this century, existing water supplies for the Las Vegas Valley are expected to be fully used, and supplemental sources will have to be developed. Flooding of urban and agricultural lands, as well as isolated areas are recurrent problems.
The environmental quality plan discusses protection of rare and endangered fish and animals, informing the public, and improvement of streams, lakes, reservoirs, ponds, and springs. Additionally, the preservation and enhancement of Las Vegas Wash was considered.

In the economic efficiency plan, possible alternative solutions are presented for the projected water shortages. Projects are identified to relieve urban and agricultural flood problems, and brief discussion is provided concerning flood insurance and zoning.

CONTENTS

Preface

CHAPTER I

INTRODUCTION
 Purpose and Scope
 State Water Plan
 Westwide Study
 Planning Areas
 Acknowledgements

CHAPTER II

SUMMARY
 Important Questions
 Approach
 Major Water Issues
 Disposition of Las Vegas Valley Return Water Flows
 Water Economization and Key Dates
 Federal Action
 Population Pressure
 Discussion Outline

CHAPTER III

SETTING
 Dominant Features
 Climate
 Economy of the Basin
 Population, Employment, and Income
 Land Ownership and Use Patterns
 Water Resources
 Water Use
 Surface Water
 Ground Water
CHAPTER IV

ALTERNATIVE PLANS

Not Recommendations
Without Plan (WOP)
Population—Water Energy Total Situation
Municipal and Industrial (M&I) Water
Electric Energy and Associated Coolant Water
Flood Protection
Mining
Recreation and Fishery
Agriculture
Water Quality
Economic Efficiency (EE) Alternative
Components of EE Alternative
Water Supply and Economization
Virgin River
Moratorium
Return Water Handling
Small Projects for the Future
Flood Insurance Program
Environmental Quality Alternative
Components for Environmental Quality
Alternative
Informing the Public
Improvement of Streams, Lakes, Reservoirs, Ponds and Springs
Promoting Watershed Management Programs
Modernizing Existing Irrigation Facilities
Zoning Flood Plains
Establishing Scenic Vistas, Rest Areas and Natural or Wilderness-Type Areas
Designating and Establishing Recreation Sites
Encouraging Regional Planning

References
Appendix A
Criteria and Standards
Appendix B
Salinity
Appendix C
Las Vegas Valley and Colorado River Population—Water—Energy Situation
Appendix D
Outline for EE Components
Appendix E
Other EE Components
Appendix F
Analysis of Irrigated Agriculture
Appendix G
Environmental Quality Worksheets

TABLES

1 Effect of Water Economization Measures Steadily Applied to Delay Importation to 2010
2 Effect of Electric Energy Economization Measures Steadily Applied to Provide Saving of Water Through Saving of Electric Energy
3 Water Disposition for the Nevada Portion of the Lower Colorado River Basin, Planning Area V (Discussion Outline)
4 Major Features of Area V
5 Population, Employment and Income, Planning Area V, State of Nevada, and United States, 1970
6 Employment and Earnings, Planning Area V, 1970
7 Land Ownership, Planning Area V, 1967
8 Land Use Summary, Planning Area V, 1970
9 Estimated Water Use Area V, 1969
10 Historic Nevada Diversions from Mainstream of Colorado River, 1960-1973
11 Historic Ground Water Pumpage from Las Vegas Valley, 1960-1973
13 Summary of Water Contracts (1/27/72)
14 Summary of Existing Contracts (1/27/72)
15 Summary of Existing and Potential Future Contracts (1/27/72)
16 Population Projections, Area V
17 Projected Municipal and Industrial Water Requirements, Area V
18 Projected Electric Energy and Equivalent Coolant Water Requirements, PSA 48 and Planning Area V
19 Projected Mining Activity and Water Requirements for Mining, Planning Area V
20 Ten Potential Small Reservoirs
21 Rare and Endangered Fauna in Area V
22 Comparative Evaluation Relating Project Alternatives to Project and Environmental Quality Objectives
23 Approximation of Current Contributions to Salinity at Imperial Dam
24 Current and Projected Salinity of the Colorado River
25 Increases in Salinity Above Inflow Conditions to Boulder Basin for Discharge from Hoover Dam
Las Vegas Valley (LVV) and Colorado River Areas Water Use
Las Vegas Valley Water Demand and Supply at Key Dates
Existing Generating Plants for Area V
Schedule for Coolant Water Use in Area V
Las Vegas Valley Coolant Water Equivalent to Electric Energy and Distribution of Near Future Generation
Other Economic Efficiency Components

FIGURES

1 Annual Streamflow Distribution
 a. Muddy River Near Moapa
 b. Las Vegas Wash Near Henderson
2 Flow Diagram, Area V
3 Some Alternative Dispositions of Las Vegas Valley Treated Sewage Effluent
4 Fahrenheit-Centigrade (Celsius) Conversion
5 Percent Increase of Ratio E/P, W/P E/W above 1970 Conditions with Time
6 Las Vegas Valley Normal Relationships for Population-Share-Time
7 Las Vegas Valley Key Populations for Water Demand and Supply
8 Las Vegas Valley Key Populations for Raw, Return and Imported Water Use
9 Las Vegas Valley Key Dates for Water Demand and Supply
10 Las Vegas Valley Key Dates for Raw, Return and Imported Water Use
11 Water Equivalent to Electric Energy Generation Serving Las Vegas Valley

MAPS

1 Nevada's Hydrographic Regions
2a Planning Area V with Individual Valleys, Hydrographic Features, Roads and Major Places
2b Colorado River Basin - Nevada
3 Planning Area V and Nevada Portions of Power Supply Areas 41, 46B, 47 and 48
4 Colorado River Basin - Nevada, Alternative Plan Facilities
5 Rare and Endangered Fauna

Essentially, this report presents, in summary, the same material provided by the foregoing detail report.

CONTENTS

Preface

CHAPTER I

INTRODUCTION
 Purpose and Scope
 State Water Plan
 Westwide Study
 Planning Areas
 Acknowledgments

CHAPTER II

SETTING
 Climate
 Economy of the Basin
 Population, Employment and Income
 Land Ownership and Use Patterns
 Water Resources
 Muddy River Springs
 Water Use
 Surface Water Rights
 Ground Water Rights

CHAPTER III

CRITERIA AND STANDARDS
 Water Resources
 Water Supply
 Water Quality
 Impacts
 Tangible Impacts
 Quasi-Tangible Impacts
 Intangible Impacts

CHAPTER IV

ALTERNATIVE PLANS
 Without Plan
 Sport Fishery and Recreation
 Agriculture
 Flood Protection
Municipal and Industrial Water
Mining
Water Quality
Electric Energy and Associated Coolant Water
Economic Efficiency Alternative
Alternative I
Water Supply
Waste Water Handling
 Ground Water Recharge
 Complete Treatment
 Return to Colorado River
 Export to Dry Lake
 Export to Eldorado Valley
 Export to Hidden Valley and Jean Lake
Combination Alternative
Deep Well Disposal
No Action
Small Projects
 Las Vegas Range Wash
 Henderson Wash
 Sloan Wash
 Blue Diamond and Mud Springs Washes
 Arden Wash
 Red Rock and Flamingo Washes
 Service Berry Wash
 Ursine Wash
Environmental Quality Alternative
Components for Environmental Quality Alternative
 Informing the Public
 Improvement of Streams, Lakes, Reservoirs, Ponds, and Springs
 Promoting Watershed Management Programs
 Modernizing Existing Irrigation Facilities
 Zoning Flood Plains
 Establishing Scenic Vistas, Rest Areas, and Natural or Wilderness-Type Areas
 Designating and Establishing Recreation Sites
 Encouraging Regional Planning
Alternative II
Appendix A
 Water Quality Standards and Monitoring Data
Appendix B
 Salinity
Appendix C
 Las Vegas Valley, Water and Energy Use
Appendix D
 Reference Material
Appendix E
 Other Economic Efficiency Components
Appendix F
 Analysis of Irrigated Agriculture
Appendix G
Environmental Quality Worksheets

References

TABLES
2. Employment and Earnings, Planning Area V - 1970
3. Land Ownership, Planning Area V - 1970
4. Land Use Summary, Planning Area V - 1970
5. Summary of Water Use, Planning Area V - 1969
9. Water Delivery Contracts for the Southern Nevada Water Project
10. Summary of Existing Contracts for Colorado River Water
11. Population Projections, Area V
12. Projected Municipal and Industrial Water Requirements, Area V
13. Projected Mining Activity and Water Requirements for Mining, Area V
15. Rare and Endangered Fauna in Area V
16. Comparative Evaluation Relating Project Alternatives to Project and Environmental Quality Objectives

FIGURES
1. Annual Streamflow Distribution
2. Flow Diagram, Area V

MAPS
Colorado River Basin in Nevada
Nevada's Hydrographic Regions and State Water Planning Areas
Alternative-Plan Facilities
Rare and Endangered Fauna

This report covers the Nevada portion of headwaters of the Columbia-Snake drainage in the Pacific Northwest. It is the least populated of the planning areas with about 1,700 people in 1970. Generally, water is relatively abundant in this region. Wild Horse Reservoir is the largest body of water in the planning region. Fishing is considered excellent in Area VI. Agriculture suffers from short growing seasons.

The environmental quality plan identifies five rare and endangered fauna, and discusses modernizing irrigation facilities.

Floods have been a problem in the past. The economic efficiency plan includes three reservoirs for flood control, irrigation releases and possible recreation. They are located on Goose Creek, Indian Creek and Willow Creek.

CONTENTS

Preface

CHAPTER I

INTRODUCTION
 Purpose and Scope
 State Water Plan
 Westwide Study
 Planning Areas
 Acknowledgments

CHAPTER II

SETTING
 Climate
 Economy of the Area
 Population, Employment, and Income
 Land Ownership and Use Patterns
 Water Resources
 Wild Horse Reservoir
 Water Use
 Surface Water Rights
 Ground Water Rights

CHAPTER III

CRITERIA AND STANDARDS
 Water Resources
 Water Supply
 Water Quality
Impacts
 Tangible Impacts
 Quasi-Tangible Impacts
 Intangible Impacts

CHAPTER IV

ALTERNATIVE PLANS
Without Plan
 Sport Fishery and Recreation
 Agriculture
 Flood Protection
 Municipal and Industrial Water
 Mining
 Water Quality
Economic Efficiency Alternative
Alternative I
 Goose Creek Project
 Indian Creek Project
 Willow Creek Project
Environmental Quality Alternative
Components for Environmental Quality Alternative
 Informing the Public
 Improvement of Streams, Lakes, Reservoirs, Ponds, and Springs
 Promoting Watershed Management Programs
 Modernizing Existing Irrigation Facilities
 Zoning Flood Plains
 Establishing Scenic Vistas, Rest Areas, and Natural or Wilderness-Type Areas
 Designating and Establishing Recreation Sites
 Encouraging Regional Planning
Alternative II
Appendix A
 Water Quality Standards and Monitoring Data
Appendix B
 Analysis of Irrigated Agriculture
Appendix C
 Other Economic Efficiency Components
Appendix D
 Environmental Quality Worksheets
References

TABLES

1 Population, Employment, and Income, Area VI - 1970
2 Employment and Earnings, Area VI - 1970
3 Land Ownership, Area VI - 1970
4 Summary of Land Use, Area VI - 1970
5 Wild Horse Reservoir Outflow, 1939-1972
6 Summary of Water Use, Area VI - 1969
7 Interstate Streamflow, Area VI
8 Population Projections, Area VI
9 Projected Municipal and Industrial Water Requirements, Area VI
10 Projected Mining Activity and Water Requirements for Mining, Area VI

FIGURE

1 Average Streamflow Distribution

MAPS

Area VI
Nevada's Hydrographic Regions and State Water Planning Areas
Alternative-Plan Facilities
Rare and Endangered Fauna
This special summary report outlines and summarizes the Nevada water planning effort from its inception to 1974. Included are short abstracts of all Water for Nevada and Alternative Plans for Water Resource Use reports. The report also includes conclusions and recommendations formulated during the water planning process. These include matters dealing with present water law, environmental concerns, specific problems in each of Nevada's six water planning areas, and projected water requirements. Additionally the report presents drafts of geothermal legislation, Virgin River legislation, and water for wildlife legislation.

Contents

Legislative Background

Procedures

Summary of Water Planning Reports, "Water for Nevada"
Report No. 1, Guidelines for Nevada Water Planning
Report No. 2, Estimated Water Use in Nevada
Special Report, Water Supply for the Future in Southern Nevada
Special Report, Reconnaissance Soil Survey of Railroad Valley
Report No. 3, Nevada's Water Resources
Special Report, Hydrologic Atlas
Report No. 4, Forecasts for the Future - Mining
Report No. 5, Forecasts for the Future - Population
Special Report, The Future Role of Desalting in Nevada
Report No. 6, Forecasts for the Future - Fish and Wildlife
Report No. 7, Water-Related Recreation in Nevada - Present and Future
Report No. 8, Forecasts for the Future - Agriculture
Special Report, Reconnaissance Soil Survey of Dixie Valley
Report No. 9, Forecasts for the Future - Electric Energy
Special Report, Input-Output Economic Models
Special Report, Water - Legal and Administrative Aspects

Summary of Water Planning Reports, "Alternative Plans for Water Resource Use"
Walker River Basin, Area I
Carson-Truckee River Basins, Area II

-93-
General Findings

General Conclusions and Recommendations
Water Law and Administrative Procedures
Funding of Water Resource Projects
Local Options and Discretion
Mining or Depletion of Ground Water
Transbasin Diversions
Preferred Uses
Reservation of Water Quantities
Termed Approvals of Water Appropriations
Water Supplies and Rights for Temporary Construction Uses
Wells for Domestic Use
Taxes on Well Production
Geothermal Resources
Water Supplies for Proposed Subdivisions
State vs. Federal Jurisdiction
Flood Control
Navigability Affects
Environmental Considerations
Continuing Planning Efforts

Regional Conclusions and Recommendations
Walker River Basin
Carson-Truckee River Basins
Humboldt River Basin
Central Region
Colorado River Basin
Snake River Basin

Conclusions and Recommendations on Projected Water Requirements
Municipal and Industrial
Electric Energy Generation
Mining
Recreation
Agriculture
Fish and Wildlife

The Plan

Appendix
Draft of Geothermal Legislation
Draft of Virgin River Compact Legislation
Draft of Water for Wildlife Legislation